- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 ArgentinaPublisher:Springer Science and Business Media LLC Authors: Francisco J. García-Soriano; M. Laura Para; Guillermina L. Luque; Daniel Barraco; +2 AuthorsFrancisco J. García-Soriano; M. Laura Para; Guillermina L. Luque; Daniel Barraco; Ezequiel P. M. Leiva; German Lener;handle: 11336/142961
High-power high-density lithium rechargeable batteries are necessary to meet the energy demand of electric vehicles and high-power stationary grids. Here, we present a straightforward method for obtaining carbon nanofibers (CNFs) as a polysulfide barrier in Li-S cells, resulting in a significant increase in cell performance. CNFs were coated both on the separator and on the cathode. The CNF-coated cathode showed a specific capacity of 1010 mA h g−1 after 250 cycles at 0.2 C, with a capacity fading of 0.021% per cycle. In addition, at 1 C, it delivered 946 mA h g−1, thus presenting a fast Li+ transport with a good capacity. This result turns CNFs-coated cathodes into a promising system for obtaining high-performance Li-S cells.
CONICET Digital arrow_drop_down Journal of Solid State ElectrochemistryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10008-020-04749-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CONICET Digital arrow_drop_down Journal of Solid State ElectrochemistryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10008-020-04749-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ArgentinaPublisher:Springer Science and Business Media LLC Authors: Francisco J. García-Soriano; M. Laura Para; Guillermina L. Luque; Daniel Barraco; +2 AuthorsFrancisco J. García-Soriano; M. Laura Para; Guillermina L. Luque; Daniel Barraco; Ezequiel P. M. Leiva; German Lener;handle: 11336/142961
High-power high-density lithium rechargeable batteries are necessary to meet the energy demand of electric vehicles and high-power stationary grids. Here, we present a straightforward method for obtaining carbon nanofibers (CNFs) as a polysulfide barrier in Li-S cells, resulting in a significant increase in cell performance. CNFs were coated both on the separator and on the cathode. The CNF-coated cathode showed a specific capacity of 1010 mA h g−1 after 250 cycles at 0.2 C, with a capacity fading of 0.021% per cycle. In addition, at 1 C, it delivered 946 mA h g−1, thus presenting a fast Li+ transport with a good capacity. This result turns CNFs-coated cathodes into a promising system for obtaining high-performance Li-S cells.
CONICET Digital arrow_drop_down Journal of Solid State ElectrochemistryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10008-020-04749-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CONICET Digital arrow_drop_down Journal of Solid State ElectrochemistryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10008-020-04749-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 ArgentinaPublisher:Springer Science and Business Media LLC Authors: Francisco J. García-Soriano; M. Laura Para; Guillermina L. Luque; Daniel Barraco; +2 AuthorsFrancisco J. García-Soriano; M. Laura Para; Guillermina L. Luque; Daniel Barraco; Ezequiel P. M. Leiva; German Lener;handle: 11336/142961
High-power high-density lithium rechargeable batteries are necessary to meet the energy demand of electric vehicles and high-power stationary grids. Here, we present a straightforward method for obtaining carbon nanofibers (CNFs) as a polysulfide barrier in Li-S cells, resulting in a significant increase in cell performance. CNFs were coated both on the separator and on the cathode. The CNF-coated cathode showed a specific capacity of 1010 mA h g−1 after 250 cycles at 0.2 C, with a capacity fading of 0.021% per cycle. In addition, at 1 C, it delivered 946 mA h g−1, thus presenting a fast Li+ transport with a good capacity. This result turns CNFs-coated cathodes into a promising system for obtaining high-performance Li-S cells.
CONICET Digital arrow_drop_down Journal of Solid State ElectrochemistryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10008-020-04749-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CONICET Digital arrow_drop_down Journal of Solid State ElectrochemistryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10008-020-04749-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ArgentinaPublisher:Springer Science and Business Media LLC Authors: Francisco J. García-Soriano; M. Laura Para; Guillermina L. Luque; Daniel Barraco; +2 AuthorsFrancisco J. García-Soriano; M. Laura Para; Guillermina L. Luque; Daniel Barraco; Ezequiel P. M. Leiva; German Lener;handle: 11336/142961
High-power high-density lithium rechargeable batteries are necessary to meet the energy demand of electric vehicles and high-power stationary grids. Here, we present a straightforward method for obtaining carbon nanofibers (CNFs) as a polysulfide barrier in Li-S cells, resulting in a significant increase in cell performance. CNFs were coated both on the separator and on the cathode. The CNF-coated cathode showed a specific capacity of 1010 mA h g−1 after 250 cycles at 0.2 C, with a capacity fading of 0.021% per cycle. In addition, at 1 C, it delivered 946 mA h g−1, thus presenting a fast Li+ transport with a good capacity. This result turns CNFs-coated cathodes into a promising system for obtaining high-performance Li-S cells.
CONICET Digital arrow_drop_down Journal of Solid State ElectrochemistryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10008-020-04749-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CONICET Digital arrow_drop_down Journal of Solid State ElectrochemistryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10008-020-04749-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu