- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Australia, Australia, PortugalPublisher:Frontiers Media SA Cristina Matos; Cristina Matos; Cristina M. Monteiro; Cristina Santos; Cristina Santos; Ana Briga-Sá; Ana Briga-Sá; Monzur Alam Imteaz;handle: 1959.3/474840
info:eu-repo/semantics/publishedVersion
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefFrontiers in Environmental ScienceOther literature type . 2023License: CC BYData sources: Ciência-UCPRepositório Aberto da Universidade do PortoArticle . 2023Data sources: Repositório Aberto da Universidade do PortoSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2023.1256044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 27visibility views 27 download downloads 35 Powered bymore_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefFrontiers in Environmental ScienceOther literature type . 2023License: CC BYData sources: Ciência-UCPRepositório Aberto da Universidade do PortoArticle . 2023Data sources: Repositório Aberto da Universidade do PortoSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2023.1256044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Australia, Australia, PortugalPublisher:Frontiers Media SA Cristina Matos; Cristina Matos; Cristina M. Monteiro; Cristina Santos; Cristina Santos; Ana Briga-Sá; Ana Briga-Sá; Monzur Alam Imteaz;handle: 1959.3/474840
info:eu-repo/semantics/publishedVersion
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefFrontiers in Environmental ScienceOther literature type . 2023License: CC BYData sources: Ciência-UCPRepositório Aberto da Universidade do PortoArticle . 2023Data sources: Repositório Aberto da Universidade do PortoSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2023.1256044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 27visibility views 27 download downloads 35 Powered bymore_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefFrontiers in Environmental ScienceOther literature type . 2023License: CC BYData sources: Ciência-UCPRepositório Aberto da Universidade do PortoArticle . 2023Data sources: Repositório Aberto da Universidade do PortoSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2023.1256044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 PortugalPublisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/34585/2007, FCT | SFRH/BD/9332/2002FCT| SFRH/BPD/34585/2007 ,FCT| SFRH/BD/9332/2002Authors: Monteiro, Cristina M.; Marques, Ana P. G. C.; Castro, Paula M. L.; Malcata, F. Xavier;pmid: 19225897
Microalgae have been proven efficient biological vectors for heavy metal uptake. In order to further study their biosorption potential, a strain of Desmodesmus pleiomorphus (L) was isolated from a strongly contaminated industrial site in Portugal. Under different initial Zn(2+) concentrations, metal removal by that strain reached a maximum of 360 mg Zn/g biomass after 7 days, at 30 mg Zn/l, after an initial rapid phase of uptake. Comparative studies were carried out using a strain of the same microalgal species that is commercially available (ACOI 561): when exposed to 30 mg Zn/l, it could remove only 81.8 mg Zn/g biomass. Biosorption experiments using inactivated biomass of the isolated strain reached a maximum Zn(2+) uptake of 103.7 mg/g. Metal removal at various initial pH values was studied as well; higher removal was obtained at pH 5.0. The microalga strain L, isolated from the contaminated site, exhibited a much higher removal capacity than the commercial strain, and the living biomass yielded higher levels of metal removal than its inactivated form.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-009-9250-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 45 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-009-9250-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 PortugalPublisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/34585/2007, FCT | SFRH/BD/9332/2002FCT| SFRH/BPD/34585/2007 ,FCT| SFRH/BD/9332/2002Authors: Monteiro, Cristina M.; Marques, Ana P. G. C.; Castro, Paula M. L.; Malcata, F. Xavier;pmid: 19225897
Microalgae have been proven efficient biological vectors for heavy metal uptake. In order to further study their biosorption potential, a strain of Desmodesmus pleiomorphus (L) was isolated from a strongly contaminated industrial site in Portugal. Under different initial Zn(2+) concentrations, metal removal by that strain reached a maximum of 360 mg Zn/g biomass after 7 days, at 30 mg Zn/l, after an initial rapid phase of uptake. Comparative studies were carried out using a strain of the same microalgal species that is commercially available (ACOI 561): when exposed to 30 mg Zn/l, it could remove only 81.8 mg Zn/g biomass. Biosorption experiments using inactivated biomass of the isolated strain reached a maximum Zn(2+) uptake of 103.7 mg/g. Metal removal at various initial pH values was studied as well; higher removal was obtained at pH 5.0. The microalga strain L, isolated from the contaminated site, exhibited a much higher removal capacity than the commercial strain, and the living biomass yielded higher levels of metal removal than its inactivated form.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-009-9250-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 45 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-009-9250-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Australia, Australia, PortugalPublisher:Frontiers Media SA Cristina Matos; Cristina Matos; Cristina M. Monteiro; Cristina Santos; Cristina Santos; Ana Briga-Sá; Ana Briga-Sá; Monzur Alam Imteaz;handle: 1959.3/474840
info:eu-repo/semantics/publishedVersion
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefFrontiers in Environmental ScienceOther literature type . 2023License: CC BYData sources: Ciência-UCPRepositório Aberto da Universidade do PortoArticle . 2023Data sources: Repositório Aberto da Universidade do PortoSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2023.1256044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 27visibility views 27 download downloads 35 Powered bymore_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefFrontiers in Environmental ScienceOther literature type . 2023License: CC BYData sources: Ciência-UCPRepositório Aberto da Universidade do PortoArticle . 2023Data sources: Repositório Aberto da Universidade do PortoSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2023.1256044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Australia, Australia, PortugalPublisher:Frontiers Media SA Cristina Matos; Cristina Matos; Cristina M. Monteiro; Cristina Santos; Cristina Santos; Ana Briga-Sá; Ana Briga-Sá; Monzur Alam Imteaz;handle: 1959.3/474840
info:eu-repo/semantics/publishedVersion
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefFrontiers in Environmental ScienceOther literature type . 2023License: CC BYData sources: Ciência-UCPRepositório Aberto da Universidade do PortoArticle . 2023Data sources: Repositório Aberto da Universidade do PortoSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2023.1256044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 27visibility views 27 download downloads 35 Powered bymore_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefFrontiers in Environmental ScienceOther literature type . 2023License: CC BYData sources: Ciência-UCPRepositório Aberto da Universidade do PortoArticle . 2023Data sources: Repositório Aberto da Universidade do PortoSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2023.1256044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 PortugalPublisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/34585/2007, FCT | SFRH/BD/9332/2002FCT| SFRH/BPD/34585/2007 ,FCT| SFRH/BD/9332/2002Authors: Monteiro, Cristina M.; Marques, Ana P. G. C.; Castro, Paula M. L.; Malcata, F. Xavier;pmid: 19225897
Microalgae have been proven efficient biological vectors for heavy metal uptake. In order to further study their biosorption potential, a strain of Desmodesmus pleiomorphus (L) was isolated from a strongly contaminated industrial site in Portugal. Under different initial Zn(2+) concentrations, metal removal by that strain reached a maximum of 360 mg Zn/g biomass after 7 days, at 30 mg Zn/l, after an initial rapid phase of uptake. Comparative studies were carried out using a strain of the same microalgal species that is commercially available (ACOI 561): when exposed to 30 mg Zn/l, it could remove only 81.8 mg Zn/g biomass. Biosorption experiments using inactivated biomass of the isolated strain reached a maximum Zn(2+) uptake of 103.7 mg/g. Metal removal at various initial pH values was studied as well; higher removal was obtained at pH 5.0. The microalga strain L, isolated from the contaminated site, exhibited a much higher removal capacity than the commercial strain, and the living biomass yielded higher levels of metal removal than its inactivated form.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-009-9250-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 45 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-009-9250-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 PortugalPublisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/34585/2007, FCT | SFRH/BD/9332/2002FCT| SFRH/BPD/34585/2007 ,FCT| SFRH/BD/9332/2002Authors: Monteiro, Cristina M.; Marques, Ana P. G. C.; Castro, Paula M. L.; Malcata, F. Xavier;pmid: 19225897
Microalgae have been proven efficient biological vectors for heavy metal uptake. In order to further study their biosorption potential, a strain of Desmodesmus pleiomorphus (L) was isolated from a strongly contaminated industrial site in Portugal. Under different initial Zn(2+) concentrations, metal removal by that strain reached a maximum of 360 mg Zn/g biomass after 7 days, at 30 mg Zn/l, after an initial rapid phase of uptake. Comparative studies were carried out using a strain of the same microalgal species that is commercially available (ACOI 561): when exposed to 30 mg Zn/l, it could remove only 81.8 mg Zn/g biomass. Biosorption experiments using inactivated biomass of the isolated strain reached a maximum Zn(2+) uptake of 103.7 mg/g. Metal removal at various initial pH values was studied as well; higher removal was obtained at pH 5.0. The microalga strain L, isolated from the contaminated site, exhibited a much higher removal capacity than the commercial strain, and the living biomass yielded higher levels of metal removal than its inactivated form.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-009-9250-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 45 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-009-9250-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu