- home
- Advanced Search
- Energy Research
- 6. Clean water
- Energy Research
- 6. Clean water
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Zbigniew Rogala;Abstract The performance of two-bed silica gel-water adsorption chiller using flat-tube adsorbers is modelled in wide range of operating conditions: heating water inlet temperature in the range of 50–90 °C, cooling water inlet temperature in the range of 20–35 °C, chilled water inlet temperatures of 10 °C and 15 °C, switching time 420 s and silica gel grain size 0.3 mm. In order to improve Coefficient of Performance (COP) and Specific Cooling Power (SCP) of the chiller optimization of fin height and spacing of the flat-tube heat exchanger is carried out. Flat-tube heat exchangers are found to be suitable for application as silica gel-water adsorbers. They are characterized by distinctive SCP (up to 750 W kg - 1 ). Optimization of flat-tube adsorbers geometry led to improvement of COP up to 3.7% and SCP up to 6.3%.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2017.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2017.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Bartosz Gil; Zbigniew Rogala; Paweł Dorosz;doi: 10.3390/en13010069
This paper investigates the influence of low-pressure glow plasma water treatment on boiling phenomenon. The presented results show the novel influence and potential new applications of low-pressure glow plasma treated water. Low-pressure glow plasma water treatment affects some of its physical properties such as surface tension, pH, and electric conductivity; this is due to changes in the water structure. An experimental analysis aimed to investigate the effect of such a treatment on the boiling heat transfer coefficient of water, and to assess the stability of GPTW. The experiments were carried out at atmospheric and reduced pressure for heat fluxes up to 70 kW/m2. The analysis shows significant deterioration of the boiling heat transfer coefficient under reduced pressure. In addition, the plasma treatment process had no significant effect on the thermal conductivity of water, as confirmed experimentally. A slight increase was observed, but it was within the measuring error range of the instruments used.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/1/69/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13010069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/1/69/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13010069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Zbigniew Rogala;Abstract The performance of two-bed silica gel-water adsorption chiller using flat-tube adsorbers is modelled in wide range of operating conditions: heating water inlet temperature in the range of 50–90 °C, cooling water inlet temperature in the range of 20–35 °C, chilled water inlet temperatures of 10 °C and 15 °C, switching time 420 s and silica gel grain size 0.3 mm. In order to improve Coefficient of Performance (COP) and Specific Cooling Power (SCP) of the chiller optimization of fin height and spacing of the flat-tube heat exchanger is carried out. Flat-tube heat exchangers are found to be suitable for application as silica gel-water adsorbers. They are characterized by distinctive SCP (up to 750 W kg - 1 ). Optimization of flat-tube adsorbers geometry led to improvement of COP up to 3.7% and SCP up to 6.3%.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2017.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2017.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Bartosz Gil; Zbigniew Rogala; Paweł Dorosz;doi: 10.3390/en13010069
This paper investigates the influence of low-pressure glow plasma water treatment on boiling phenomenon. The presented results show the novel influence and potential new applications of low-pressure glow plasma treated water. Low-pressure glow plasma water treatment affects some of its physical properties such as surface tension, pH, and electric conductivity; this is due to changes in the water structure. An experimental analysis aimed to investigate the effect of such a treatment on the boiling heat transfer coefficient of water, and to assess the stability of GPTW. The experiments were carried out at atmospheric and reduced pressure for heat fluxes up to 70 kW/m2. The analysis shows significant deterioration of the boiling heat transfer coefficient under reduced pressure. In addition, the plasma treatment process had no significant effect on the thermal conductivity of water, as confirmed experimentally. A slight increase was observed, but it was within the measuring error range of the instruments used.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/1/69/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13010069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/1/69/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13010069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu