- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Royal Society of Chemistry (RSC) Authors: Naresh C. Osti; Eugene Mamontov;doi: 10.1039/c9se00829b
Quasielastic neutron scattering uniquely explores the mechanisms to achieve higher capacitance and rate handling in ionic liquid-based supercapacitor materials.
Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00829b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00829b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | The NIST/NSF Center for H...NSF| The NIST/NSF Center for High Resolution Neutron ScatteringEugene Mamontov; Christine B. Hatter; Madhusudan Tyagi; Madhusudan Tyagi; Patrice Simon; Patrice Simon; Patrick Urbankowski; Ke Li; Naresh C. Osti; Lukas Vlcek; Lukas Vlcek; Xuehang Wang; Asia Sarycheva; Yury Gogotsi; Takeshi Torita; Zifeng Lin; Zifeng Lin; Tyler S. Mathis;Pseudocapacitive energy storage in supercapacitor electrodes differs significantly from the electrical double-layer mechanism of porous carbon materials, which requires a change from conventional thinking when choosing appropriate electrolytes. Here we show how simply changing the solvent of an electrolyte system can drastically influence the pseudocapacitive charge storage of the two-dimensional titanium carbide, Ti3C2 (a representative member of the MXene family). Measurements of the charge stored by Ti3C2 in lithium-containing electrolytes with nitrile-, carbonate- and sulfoxide-based solvents show that the use of a carbonate solvent doubles the charge stored by Ti3C2 when compared with the other solvent systems. We find that the chemical nature of the electrolyte solvent has a profound effect on the arrangement of molecules/ions in Ti3C2, which correlates directly to the total charge being stored. Having nearly completely desolvated lithium ions in Ti3C2 for the carbonate-based electrolyte leads to high volumetric capacitance at high charge–discharge rates, demonstrating the importance of considering all aspects of an electrochemical system during development.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2019 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2019 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Université de Nantes: HAL-UNIV-NANTESArticle . 2019Full-Text: https://hal.science/hal-02360481Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02360481Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1201/978100...Part of book or chapter of book . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0339-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 437 citations 437 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 51visibility views 51 download downloads 128 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2019 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2019 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Université de Nantes: HAL-UNIV-NANTESArticle . 2019Full-Text: https://hal.science/hal-02360481Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02360481Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1201/978100...Part of book or chapter of book . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0339-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Kevin M. Cook; Eugene Mamontov; Boris Dyatkin; Yury Gogotsi;AbstractThis study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Unlike hydrogenated pores, aminated pores do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.
Progress in Natural ... arrow_drop_down Progress in Natural Science: Materials InternationalArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Natural Science: Materials InternationalArticleLicense: CC BY NC NDData sources: UnpayWallProgress in Natural Science: Materials InternationalArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnsc.2015.11.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Natural ... arrow_drop_down Progress in Natural Science: Materials InternationalArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Natural Science: Materials InternationalArticleLicense: CC BY NC NDData sources: UnpayWallProgress in Natural Science: Materials InternationalArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnsc.2015.11.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) C. A. Bridges; M. L. Martins; C. J. Jafta; X. G. Sun; M. P. Paranthaman; J. Liu; S. Dai; E. Mamontov;pmid: 34003647
Quasi-liquid solid electrolytes are a promising alternative for next-generation Li batteries. These systems combine the safety of solid electrolytes with the desired properties of liquids and are typically formed by solutions of Li salts in ionic liquids incorporated into solid matrices. Here, we present a fundamental understanding of the transport properties in solutions of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]), either in bulk form or incorporated in a boron nitride (BN) matrix. We performed a series of quasi-elastic neutron scattering experiments that, given the high incoherent neutron scattering cross section of hydrogen, allowed us to focus on the Emim+ dynamics. First, [Emim][TFSI]/LiTFSI solutions (0.5 and 2.5 mol·kg-1) were investigated and we show how the increase in the concentration reduces the Emim+ mobility and increases the activation energy of their long-range motions. Then, the 0.5 mol·kg-1 solution was incorporated into the BN matrix and we report that the diffusivities of the Emim+ cations that remain mobile under confinement are highly accelerated in comparison with the bulk sample and the activation energy of these motions is drastically reduced. We present the experimental evidence that this effect is related to the content of the Emim+ cations immobilized near the surfaces of the BN pores.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry BArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcb.1c02383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry BArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcb.1c02383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:AIP Publishing Naresh C. Osti; Kun Liang; Kaitlyn Prenger; Bishnu P. Thapaliya; Madhusudan Tyagi; Sheng Dai; Michael Naguib; Eugene Mamontov;doi: 10.1063/5.0224332
Electrical double-layer capacitors (EDLCs) are of increasing importance in energy storage from renewable sources. The properties of the electrode and electrolyte materials influence the energy and power densities of EDLCs. We examined the specific capacitance and ion dynamics of a protic ionic liquid confined in pre-intercalated Ti3C2Tx MXene. Our electrochemical measurements demonstrated that the creation of a protic ionic liquid, 1-butyl-3-H-imidazolium bis(trifluoromethanesulfonyl)imide (BuIMH-NTf2), using a mixture of ionic liquid, 1-butyl imidazole (BuIM), and salt, bis(trifluoromethanesulfonyl)imide (HNTf2), in a ratio of 0.8:0.2 led to the optimal capacitance. Remarkably, quasi-elastic neutron scattering measurements revealed increased particle mobility at this composition, attributed to the more efficient accumulation of BuIMH+ on the electrode surface. This deposit of additional ions results in fewer BuIM molecules away from the surface, enhancing their mobility due to reduced crowding. This composition-dependent electrochemical behavior will guide the formulation of more efficient protic ionic liquid systems, enabling faster ion transport in energy storage devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0224332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0224332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Eugene Mamontov; Michael Ohl; Laura Stingaciu; Niina Jalarvo; Sudipta Gupta;pmid: 27021657
We investigate the secondary relaxations and their link to the main structural relaxation in glass-forming liquids using glycerol as a model system. We analyze the incoherent neutron scattering signal dependence on the scattering momentum transfer, Q , in order to obtain the characteristic length scale for different secondary relaxations. Such a capability of neutron scattering makes it somewhat unique and highly complementary to the traditional techniques of glass physics, such as light scattering and broadband dielectric spectroscopy, which provide information on the time scale, but not the length scales, of relaxation processes. The choice of suitable neutron scattering techniques depends on the time scale of the relaxation of interest. We use neutron backscattering to identify the characteristic length scale of 0.7 Å for the faster secondary relaxation described in the framework of the mode-coupling theory (MCT). Neutron spin-echo is employed to probe the slower secondary relaxation of the excess wing type at a low temperature ( ∼ 1.13T g . The characteristic length scale for this excess wing dynamics is approximately 4.7 Å. Besides the Q -dependence, the direct coupling of neutron scattering signal to density fluctuation makes this technique indispensable for measuring the length scale of the microscopic relaxation dynamics.
The European Physica... arrow_drop_down The European Physical Journal EArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epje/i2016-16040-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert The European Physica... arrow_drop_down The European Physical Journal EArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epje/i2016-16040-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Royal Society of Chemistry (RSC) Authors: Naresh C. Osti; Eugene Mamontov;doi: 10.1039/c9se00829b
Quasielastic neutron scattering uniquely explores the mechanisms to achieve higher capacitance and rate handling in ionic liquid-based supercapacitor materials.
Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00829b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00829b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | The NIST/NSF Center for H...NSF| The NIST/NSF Center for High Resolution Neutron ScatteringEugene Mamontov; Christine B. Hatter; Madhusudan Tyagi; Madhusudan Tyagi; Patrice Simon; Patrice Simon; Patrick Urbankowski; Ke Li; Naresh C. Osti; Lukas Vlcek; Lukas Vlcek; Xuehang Wang; Asia Sarycheva; Yury Gogotsi; Takeshi Torita; Zifeng Lin; Zifeng Lin; Tyler S. Mathis;Pseudocapacitive energy storage in supercapacitor electrodes differs significantly from the electrical double-layer mechanism of porous carbon materials, which requires a change from conventional thinking when choosing appropriate electrolytes. Here we show how simply changing the solvent of an electrolyte system can drastically influence the pseudocapacitive charge storage of the two-dimensional titanium carbide, Ti3C2 (a representative member of the MXene family). Measurements of the charge stored by Ti3C2 in lithium-containing electrolytes with nitrile-, carbonate- and sulfoxide-based solvents show that the use of a carbonate solvent doubles the charge stored by Ti3C2 when compared with the other solvent systems. We find that the chemical nature of the electrolyte solvent has a profound effect on the arrangement of molecules/ions in Ti3C2, which correlates directly to the total charge being stored. Having nearly completely desolvated lithium ions in Ti3C2 for the carbonate-based electrolyte leads to high volumetric capacitance at high charge–discharge rates, demonstrating the importance of considering all aspects of an electrochemical system during development.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2019 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2019 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Université de Nantes: HAL-UNIV-NANTESArticle . 2019Full-Text: https://hal.science/hal-02360481Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02360481Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1201/978100...Part of book or chapter of book . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0339-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 437 citations 437 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 51visibility views 51 download downloads 128 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2019 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2019 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Université de Nantes: HAL-UNIV-NANTESArticle . 2019Full-Text: https://hal.science/hal-02360481Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02360481Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1201/978100...Part of book or chapter of book . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0339-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Kevin M. Cook; Eugene Mamontov; Boris Dyatkin; Yury Gogotsi;AbstractThis study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Unlike hydrogenated pores, aminated pores do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.
Progress in Natural ... arrow_drop_down Progress in Natural Science: Materials InternationalArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Natural Science: Materials InternationalArticleLicense: CC BY NC NDData sources: UnpayWallProgress in Natural Science: Materials InternationalArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnsc.2015.11.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Natural ... arrow_drop_down Progress in Natural Science: Materials InternationalArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Natural Science: Materials InternationalArticleLicense: CC BY NC NDData sources: UnpayWallProgress in Natural Science: Materials InternationalArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnsc.2015.11.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) C. A. Bridges; M. L. Martins; C. J. Jafta; X. G. Sun; M. P. Paranthaman; J. Liu; S. Dai; E. Mamontov;pmid: 34003647
Quasi-liquid solid electrolytes are a promising alternative for next-generation Li batteries. These systems combine the safety of solid electrolytes with the desired properties of liquids and are typically formed by solutions of Li salts in ionic liquids incorporated into solid matrices. Here, we present a fundamental understanding of the transport properties in solutions of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]), either in bulk form or incorporated in a boron nitride (BN) matrix. We performed a series of quasi-elastic neutron scattering experiments that, given the high incoherent neutron scattering cross section of hydrogen, allowed us to focus on the Emim+ dynamics. First, [Emim][TFSI]/LiTFSI solutions (0.5 and 2.5 mol·kg-1) were investigated and we show how the increase in the concentration reduces the Emim+ mobility and increases the activation energy of their long-range motions. Then, the 0.5 mol·kg-1 solution was incorporated into the BN matrix and we report that the diffusivities of the Emim+ cations that remain mobile under confinement are highly accelerated in comparison with the bulk sample and the activation energy of these motions is drastically reduced. We present the experimental evidence that this effect is related to the content of the Emim+ cations immobilized near the surfaces of the BN pores.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry BArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcb.1c02383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry BArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcb.1c02383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:AIP Publishing Naresh C. Osti; Kun Liang; Kaitlyn Prenger; Bishnu P. Thapaliya; Madhusudan Tyagi; Sheng Dai; Michael Naguib; Eugene Mamontov;doi: 10.1063/5.0224332
Electrical double-layer capacitors (EDLCs) are of increasing importance in energy storage from renewable sources. The properties of the electrode and electrolyte materials influence the energy and power densities of EDLCs. We examined the specific capacitance and ion dynamics of a protic ionic liquid confined in pre-intercalated Ti3C2Tx MXene. Our electrochemical measurements demonstrated that the creation of a protic ionic liquid, 1-butyl-3-H-imidazolium bis(trifluoromethanesulfonyl)imide (BuIMH-NTf2), using a mixture of ionic liquid, 1-butyl imidazole (BuIM), and salt, bis(trifluoromethanesulfonyl)imide (HNTf2), in a ratio of 0.8:0.2 led to the optimal capacitance. Remarkably, quasi-elastic neutron scattering measurements revealed increased particle mobility at this composition, attributed to the more efficient accumulation of BuIMH+ on the electrode surface. This deposit of additional ions results in fewer BuIM molecules away from the surface, enhancing their mobility due to reduced crowding. This composition-dependent electrochemical behavior will guide the formulation of more efficient protic ionic liquid systems, enabling faster ion transport in energy storage devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0224332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0224332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Eugene Mamontov; Michael Ohl; Laura Stingaciu; Niina Jalarvo; Sudipta Gupta;pmid: 27021657
We investigate the secondary relaxations and their link to the main structural relaxation in glass-forming liquids using glycerol as a model system. We analyze the incoherent neutron scattering signal dependence on the scattering momentum transfer, Q , in order to obtain the characteristic length scale for different secondary relaxations. Such a capability of neutron scattering makes it somewhat unique and highly complementary to the traditional techniques of glass physics, such as light scattering and broadband dielectric spectroscopy, which provide information on the time scale, but not the length scales, of relaxation processes. The choice of suitable neutron scattering techniques depends on the time scale of the relaxation of interest. We use neutron backscattering to identify the characteristic length scale of 0.7 Å for the faster secondary relaxation described in the framework of the mode-coupling theory (MCT). Neutron spin-echo is employed to probe the slower secondary relaxation of the excess wing type at a low temperature ( ∼ 1.13T g . The characteristic length scale for this excess wing dynamics is approximately 4.7 Å. Besides the Q -dependence, the direct coupling of neutron scattering signal to density fluctuation makes this technique indispensable for measuring the length scale of the microscopic relaxation dynamics.
The European Physica... arrow_drop_down The European Physical Journal EArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epje/i2016-16040-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert The European Physica... arrow_drop_down The European Physical Journal EArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epje/i2016-16040-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu