- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Kyoik Choi; Jangwon Suh;doi: 10.3390/en16114513
In contrast to commercial photovoltaic (PV) power plants, PV systems at universities are not actively monitored for PV module failures, which can result in a loss of power generation. In this study, we used thermal imaging with drones to detect rooftop PV module failures at a university campus before comparing reductions in power generation according to the percentage of module failures in each building. Toward this aim, we adjusted the four factors affecting the power generation of the four buildings to have the same values (capacities, degradations due to aging, and the tilts and orientation angles of the PV systems) and calibrated the actual monthly power generation accordingly. Consequently, we detected three types of faults, namely open short-circuits, hot spots, and potential-induced degradation. Furthermore, we found that the higher the percentage of defective modules, the lower the power generation. In particular, the annual power generation of the building with the highest percentage of defective modules (12%) was reduced by approximately 25,042 kWh (32%) compared to the building with the lowest percentage of defective modules (4%). The results of this study can contribute to improving awareness of the importance of detecting and maintaining defective PV modules on university campuses and provide a useful basis for securing the sustainability of green campuses.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4513/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4513/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Kyoik Choi; Jangwon Suh;doi: 10.3390/en16114513
In contrast to commercial photovoltaic (PV) power plants, PV systems at universities are not actively monitored for PV module failures, which can result in a loss of power generation. In this study, we used thermal imaging with drones to detect rooftop PV module failures at a university campus before comparing reductions in power generation according to the percentage of module failures in each building. Toward this aim, we adjusted the four factors affecting the power generation of the four buildings to have the same values (capacities, degradations due to aging, and the tilts and orientation angles of the PV systems) and calibrated the actual monthly power generation accordingly. Consequently, we detected three types of faults, namely open short-circuits, hot spots, and potential-induced degradation. Furthermore, we found that the higher the percentage of defective modules, the lower the power generation. In particular, the annual power generation of the building with the highest percentage of defective modules (12%) was reduced by approximately 25,042 kWh (32%) compared to the building with the lowest percentage of defective modules (4%). The results of this study can contribute to improving awareness of the importance of detecting and maintaining defective PV modules on university campuses and provide a useful basis for securing the sustainability of green campuses.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4513/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4513/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Jangwon Suh; Yosoon Choi;doi: 10.3390/su9071234
Hourly irradiance values are essential data to reasonably estimate the electric power production (EPP) from a photovoltaic (PV) system. Worldwide monthly irradiance data are available from meteorological observation satellites; however, adequate hourly data are not widely available in developing countries or rural areas where PV systems are needed most. Aiming to supply such data, this study compared three different methods (i.e., sunshine hours mean, the SOLPOS algorithm, and the Duffie and Beckman algorithm) to convert the monthly accumulated irradiance data into hourly irradiance data. The monthly accumulated irradiance data at 11 sites in the United States and Korea, acquired from the National Renewable Energy Laboratory, were converted into hourly irradiance data by employing the three methods. The converted hourly data were entered into the System Advisor Model to estimate the monthly total EPP values (henceforth, EPPs) from the PV systems. Each estimated EPP value was compared with those analyzed from the measured hourly data (regarded as the reference values in this study). After considering the errors between the EPPs estimated from the converted hourly irradiance data and measured using the hourly irradiance data, the simulation results with identical PV capacities indicated that the SOLPOS algorithm was the most appropriate conversion method.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/7/1234/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9071234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/7/1234/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9071234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Jangwon Suh; Yosoon Choi;doi: 10.3390/su9071234
Hourly irradiance values are essential data to reasonably estimate the electric power production (EPP) from a photovoltaic (PV) system. Worldwide monthly irradiance data are available from meteorological observation satellites; however, adequate hourly data are not widely available in developing countries or rural areas where PV systems are needed most. Aiming to supply such data, this study compared three different methods (i.e., sunshine hours mean, the SOLPOS algorithm, and the Duffie and Beckman algorithm) to convert the monthly accumulated irradiance data into hourly irradiance data. The monthly accumulated irradiance data at 11 sites in the United States and Korea, acquired from the National Renewable Energy Laboratory, were converted into hourly irradiance data by employing the three methods. The converted hourly data were entered into the System Advisor Model to estimate the monthly total EPP values (henceforth, EPPs) from the PV systems. Each estimated EPP value was compared with those analyzed from the measured hourly data (regarded as the reference values in this study). After considering the errors between the EPPs estimated from the converted hourly irradiance data and measured using the hourly irradiance data, the simulation results with identical PV capacities indicated that the SOLPOS algorithm was the most appropriate conversion method.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/7/1234/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9071234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/7/1234/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9071234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Jangwon Suh;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Jangwon Suh;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Jangwon Suh; Yonghae Jang; Yosoon Choi;doi: 10.3390/su12010276
An interest in floating photovoltaic (PV) is growing drastically worldwide. To evaluate the feasibility of floating PV projects, an accurate estimation of electric power output (EPO) is a crucial first step. This study estimates the EPO of a floating PV system and compares it with the actual EPO observed at the Hapcheon Dam, Korea. Typical meteorological year data and system design parameters were entered into System Advisor Model (SAM) software to estimate the hourly and monthly EPOs. The monthly estimated EPOs were lower than the monthly observed EPOs. This result is ascribed to the cooling effect of the water environment on the floating PV module, which makes the floating PV efficiency higher than overland PV efficiency. Unfortunately, most commercial PV software, including the SAM, was unable to consider this effect in estimating EPO. The error results showed it was possible to estimate the monthly EPOs with an error of less than 15% (simply by simulation) and 9% (when considering the cooling effect: 110% of the estimated monthly EPOs). This indicates that the approach of using empirical results can provide more reliable estimation of EPO in the feasibility assessment stage of floating PV projects. Furthermore, it is necessary to develop simulation software dedicated to the floating PV system.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/276/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010276&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/276/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010276&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Jangwon Suh; Yonghae Jang; Yosoon Choi;doi: 10.3390/su12010276
An interest in floating photovoltaic (PV) is growing drastically worldwide. To evaluate the feasibility of floating PV projects, an accurate estimation of electric power output (EPO) is a crucial first step. This study estimates the EPO of a floating PV system and compares it with the actual EPO observed at the Hapcheon Dam, Korea. Typical meteorological year data and system design parameters were entered into System Advisor Model (SAM) software to estimate the hourly and monthly EPOs. The monthly estimated EPOs were lower than the monthly observed EPOs. This result is ascribed to the cooling effect of the water environment on the floating PV module, which makes the floating PV efficiency higher than overland PV efficiency. Unfortunately, most commercial PV software, including the SAM, was unable to consider this effect in estimating EPO. The error results showed it was possible to estimate the monthly EPOs with an error of less than 15% (simply by simulation) and 9% (when considering the cooling effect: 110% of the estimated monthly EPOs). This indicates that the approach of using empirical results can provide more reliable estimation of EPO in the feasibility assessment stage of floating PV projects. Furthermore, it is necessary to develop simulation software dedicated to the floating PV system.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/276/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010276&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/276/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010276&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Chung-Hyun Lee; Woo-Hyuk Lee; Yosoon Choi; Jangwon Suh; Sung-Min Kim;doi: 10.3390/en16073135
In this study, we developed a 3D-model-based technology that can evaluate solar access by analyzing solar radiation and shade to find the optimal location for a solar system. We developed an algorithm that can quickly calculate viewshed by applying ray-casting technology, which is useful in the field of computer graphics. To apply the developed technology, an unmanned aerial vehicle (DJI MAVIC 3) was used to create a 3D model by taking 320 photos of the Kangwon National University Samcheok campus. To verify the developed technology, a comparison with image-based analysis using a 360-degree camera was performed for 30 points. As a result of applying the developed technology to the study area, it was possible to calculate the solar access for each point. In general, image-based analysis exaggerates the effects of objects such as trees, whereas the developed technique can produce realistic results if the 3D objects were well built. If the technology is further developed in the future, it can be used to increase the efficiency of solar power generation.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3135/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3135/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Chung-Hyun Lee; Woo-Hyuk Lee; Yosoon Choi; Jangwon Suh; Sung-Min Kim;doi: 10.3390/en16073135
In this study, we developed a 3D-model-based technology that can evaluate solar access by analyzing solar radiation and shade to find the optimal location for a solar system. We developed an algorithm that can quickly calculate viewshed by applying ray-casting technology, which is useful in the field of computer graphics. To apply the developed technology, an unmanned aerial vehicle (DJI MAVIC 3) was used to create a 3D model by taking 320 photos of the Kangwon National University Samcheok campus. To verify the developed technology, a comparison with image-based analysis using a 360-degree camera was performed for 30 points. As a result of applying the developed technology to the study area, it was possible to calculate the solar access for each point. In general, image-based analysis exaggerates the effects of objects such as trees, whereas the developed technique can produce realistic results if the 3D objects were well built. If the technology is further developed in the future, it can be used to increase the efficiency of solar power generation.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3135/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3135/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Sung-Min Kim; Yosoon Choi; Jangwon Suh;doi: 10.3390/app10145018
In this study, applications of the Arduino platform in the mining industry were reviewed. Arduino, a representative and popular open-source hardware, can acquire information from various sensors, transmit data using communication technology, and control devices through actuators. The review was conducted by classifying previous studies into three types of Arduino applications: field monitoring systems, wearable systems, and autonomous systems. With regard to field monitoring systems, most studies in mines were classified as atmospheric or geotechnical monitoring. In wearable systems, the health status of the miner was an important consideration, in addition to the environmental conditions of the mine. Arduino can be a useful tool as an initial prototype for autonomous mine systems. Arduino has advantages in that it can be combined with various electronic products and is cost-effective. Therefore, although many studies have been conducted in the laboratory (as opposed to field tests), Arduino applications can be further expanded in the mining field in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10145018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10145018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Sung-Min Kim; Yosoon Choi; Jangwon Suh;doi: 10.3390/app10145018
In this study, applications of the Arduino platform in the mining industry were reviewed. Arduino, a representative and popular open-source hardware, can acquire information from various sensors, transmit data using communication technology, and control devices through actuators. The review was conducted by classifying previous studies into three types of Arduino applications: field monitoring systems, wearable systems, and autonomous systems. With regard to field monitoring systems, most studies in mines were classified as atmospheric or geotechnical monitoring. In wearable systems, the health status of the miner was an important consideration, in addition to the environmental conditions of the mine. Arduino can be a useful tool as an initial prototype for autonomous mine systems. Arduino has advantages in that it can be combined with various electronic products and is cost-effective. Therefore, although many studies have been conducted in the laboratory (as opposed to field tests), Arduino applications can be further expanded in the mining field in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10145018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10145018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Jangwon Suh;doi: 10.3390/app14156574
Studies on solar electric vehicles (EVs) have focused on calculating the power generation in a specific environment without discussing its practical utility. To expand the awareness of the utility of solar EVs, their potential should be evaluated by considering the operation methods of users. This study investigated the photovoltaic (PV) potential of an EV integrated with PV modules while driving on an expressway. Tunnel and shadow areas were identified to determine unpowered areas on the expressway. The PVWatts model was used to evaluate the PV potential by the time of the year. For a single vehicle traveling at 60 km/h on the Donghae expressway section during both the summer and winter solstices, the amount of power generation is within 0.208–0.317 kWh, corresponding to 0.94–1.43% of the electricity consumed for driving. Furthermore, this study assumed that office workers commute on the Donghae expressway. Under the scenario considering the time of operation (traveling to and from work and parking at work) and the shading ratio, the rechargeable amount was more than 10% of the electricity consumption. The results showed that solar roofs are potential charging supplements for EV batteries. This study can provide the efficacy and optimal operation method of solar EVs for commuters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app14156574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app14156574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Jangwon Suh;doi: 10.3390/app14156574
Studies on solar electric vehicles (EVs) have focused on calculating the power generation in a specific environment without discussing its practical utility. To expand the awareness of the utility of solar EVs, their potential should be evaluated by considering the operation methods of users. This study investigated the photovoltaic (PV) potential of an EV integrated with PV modules while driving on an expressway. Tunnel and shadow areas were identified to determine unpowered areas on the expressway. The PVWatts model was used to evaluate the PV potential by the time of the year. For a single vehicle traveling at 60 km/h on the Donghae expressway section during both the summer and winter solstices, the amount of power generation is within 0.208–0.317 kWh, corresponding to 0.94–1.43% of the electricity consumed for driving. Furthermore, this study assumed that office workers commute on the Donghae expressway. Under the scenario considering the time of operation (traveling to and from work and parking at work) and the shading ratio, the rechargeable amount was more than 10% of the electricity consumption. The results showed that solar roofs are potential charging supplements for EV batteries. This study can provide the efficacy and optimal operation method of solar EVs for commuters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app14156574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app14156574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Heejin Seo; Jangwon Suh;doi: 10.3390/app11052178
Smartphones and tablets can be effectively used in the solar photovoltaic (PV) energy field for different purposes because of their versatile capabilities incorporating hardware and software functionalities. These multifarious capabilities enable new approaches for measuring and visualizing data that are seldom available in conventional computing platforms. In this study, 100 accessible smartphone applications (apps) developed in the solar PV energy sector were investigated. The apps were categorized based on their main function as follows: computation of sun position, PV system optimal settings, PV site investigation, potential assessment of PV systems, environmental and economic assessment of PV systems, monitoring and control of PV systems, and education and learning for PV system. Each of these categories was further divided based on principal features or functions. Exemplary apps were chosen for each category and their characteristics and usefulness were investigated. Moreover, the apps for roof or rooftops and those that require built-in or external sensors were organized and analyzed according to their topic and functionality. Limitations regarding app implementation in solar PV and implications for future improvement as an alternative solar design tools were discussed. This study has significance in that it has first presented the current applicability and future perspectives of solar PV smartphone apps. Furthermore, they can be effectively used by the energy prosumers as an analysis tool for energy design due to evolving smartphone sensor technologies current opportunity factors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11052178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11052178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Heejin Seo; Jangwon Suh;doi: 10.3390/app11052178
Smartphones and tablets can be effectively used in the solar photovoltaic (PV) energy field for different purposes because of their versatile capabilities incorporating hardware and software functionalities. These multifarious capabilities enable new approaches for measuring and visualizing data that are seldom available in conventional computing platforms. In this study, 100 accessible smartphone applications (apps) developed in the solar PV energy sector were investigated. The apps were categorized based on their main function as follows: computation of sun position, PV system optimal settings, PV site investigation, potential assessment of PV systems, environmental and economic assessment of PV systems, monitoring and control of PV systems, and education and learning for PV system. Each of these categories was further divided based on principal features or functions. Exemplary apps were chosen for each category and their characteristics and usefulness were investigated. Moreover, the apps for roof or rooftops and those that require built-in or external sensors were organized and analyzed according to their topic and functionality. Limitations regarding app implementation in solar PV and implications for future improvement as an alternative solar design tools were discussed. This study has significance in that it has first presented the current applicability and future perspectives of solar PV smartphone apps. Furthermore, they can be effectively used by the energy prosumers as an analysis tool for energy design due to evolving smartphone sensor technologies current opportunity factors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11052178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11052178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:MDPI AG Authors: Jangwon Suh; Jeffrey Brownson;doi: 10.3390/en9080648
Solar farm suitability in remote areas will involve a multi-criteria evaluation (MCE) process, particularly well suited for the geographic information system (GIS) environment. Photovoltaic (PV) solar farm criteria were evaluated for an island-based case region having complex topographic and regulatory criteria, along with high demand for low-carbon local electricity production: Ulleung Island, Korea. Constraint variables that identified areas forbidden to PV farm development were consolidated into a single binary constraint layer (e.g., environmental regulation, ecological protection, future land use). Six factor variables were selected as influential on-site suitability within the geospatial database to seek out increased annual average power performance and reduced potential investment costs, forming new criteria layers for site suitability: solar irradiation, sunshine hours, average temperature in summer, proximity to transmission line, proximity to roads, and slope. Each factor variable was normalized via a fuzzy membership function (FMF) and parameter setting based on the local characteristics and criteria for a fixed axis PV system. Representative weighting of the relative importance for each factor variable was assigned via pairwise comparison completed by experts. A suitability index (SI) with six factor variables was derived using a weighted fuzzy summation method. Sensitivity analysis was conducted to assess four different SI based on the development scenarios (i.e., the combination of factors being considered). From the resulting map, three highly suitable regions were suggested and validated by comparison with satellite images to confirm the candidate sites for solar farm development. The GIS-MCE method proposed can also be applicable widely to other PV solar farm site selection projects with appropriate adaption for local variables.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/8/648/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9080648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/8/648/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9080648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:MDPI AG Authors: Jangwon Suh; Jeffrey Brownson;doi: 10.3390/en9080648
Solar farm suitability in remote areas will involve a multi-criteria evaluation (MCE) process, particularly well suited for the geographic information system (GIS) environment. Photovoltaic (PV) solar farm criteria were evaluated for an island-based case region having complex topographic and regulatory criteria, along with high demand for low-carbon local electricity production: Ulleung Island, Korea. Constraint variables that identified areas forbidden to PV farm development were consolidated into a single binary constraint layer (e.g., environmental regulation, ecological protection, future land use). Six factor variables were selected as influential on-site suitability within the geospatial database to seek out increased annual average power performance and reduced potential investment costs, forming new criteria layers for site suitability: solar irradiation, sunshine hours, average temperature in summer, proximity to transmission line, proximity to roads, and slope. Each factor variable was normalized via a fuzzy membership function (FMF) and parameter setting based on the local characteristics and criteria for a fixed axis PV system. Representative weighting of the relative importance for each factor variable was assigned via pairwise comparison completed by experts. A suitability index (SI) with six factor variables was derived using a weighted fuzzy summation method. Sensitivity analysis was conducted to assess four different SI based on the development scenarios (i.e., the combination of factors being considered). From the resulting map, three highly suitable regions were suggested and validated by comparison with satellite images to confirm the candidate sites for solar farm development. The GIS-MCE method proposed can also be applicable widely to other PV solar farm site selection projects with appropriate adaption for local variables.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/8/648/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9080648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/8/648/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9080648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Yosoon Choi; Jangwon Suh; Sung-Min Kim;doi: 10.3390/app9091960
In this study, geographic information system (GIS)-based methods and their applications in solar power system planning and design were reviewed. Three types of GIS-based studies, including those on solar radiation mapping, site evaluation, and potential assessment, were considered to elucidate the role of GISs as problem-solving tools in relation to photovoltaic and concentrated solar power systems for the conversion of solar energy into electricity. The review was performed by classifying previous GIS-based studies into several subtopics according to the complexity of the employed GIS-based methods, the type of solar power conversion technology, or the scale of the study area. Because GISs are appropriate for handling geospatial data related to solar resource and site suitability conditions on various scales, the applications of GIS-based methods in solar power system planning and design could be expanded further.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9091960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9091960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Yosoon Choi; Jangwon Suh; Sung-Min Kim;doi: 10.3390/app9091960
In this study, geographic information system (GIS)-based methods and their applications in solar power system planning and design were reviewed. Three types of GIS-based studies, including those on solar radiation mapping, site evaluation, and potential assessment, were considered to elucidate the role of GISs as problem-solving tools in relation to photovoltaic and concentrated solar power systems for the conversion of solar energy into electricity. The review was performed by classifying previous GIS-based studies into several subtopics according to the complexity of the employed GIS-based methods, the type of solar power conversion technology, or the scale of the study area. Because GISs are appropriate for handling geospatial data related to solar resource and site suitability conditions on various scales, the applications of GIS-based methods in solar power system planning and design could be expanded further.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9091960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9091960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Kyoik Choi; Jangwon Suh;doi: 10.3390/en16114513
In contrast to commercial photovoltaic (PV) power plants, PV systems at universities are not actively monitored for PV module failures, which can result in a loss of power generation. In this study, we used thermal imaging with drones to detect rooftop PV module failures at a university campus before comparing reductions in power generation according to the percentage of module failures in each building. Toward this aim, we adjusted the four factors affecting the power generation of the four buildings to have the same values (capacities, degradations due to aging, and the tilts and orientation angles of the PV systems) and calibrated the actual monthly power generation accordingly. Consequently, we detected three types of faults, namely open short-circuits, hot spots, and potential-induced degradation. Furthermore, we found that the higher the percentage of defective modules, the lower the power generation. In particular, the annual power generation of the building with the highest percentage of defective modules (12%) was reduced by approximately 25,042 kWh (32%) compared to the building with the lowest percentage of defective modules (4%). The results of this study can contribute to improving awareness of the importance of detecting and maintaining defective PV modules on university campuses and provide a useful basis for securing the sustainability of green campuses.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4513/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4513/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Kyoik Choi; Jangwon Suh;doi: 10.3390/en16114513
In contrast to commercial photovoltaic (PV) power plants, PV systems at universities are not actively monitored for PV module failures, which can result in a loss of power generation. In this study, we used thermal imaging with drones to detect rooftop PV module failures at a university campus before comparing reductions in power generation according to the percentage of module failures in each building. Toward this aim, we adjusted the four factors affecting the power generation of the four buildings to have the same values (capacities, degradations due to aging, and the tilts and orientation angles of the PV systems) and calibrated the actual monthly power generation accordingly. Consequently, we detected three types of faults, namely open short-circuits, hot spots, and potential-induced degradation. Furthermore, we found that the higher the percentage of defective modules, the lower the power generation. In particular, the annual power generation of the building with the highest percentage of defective modules (12%) was reduced by approximately 25,042 kWh (32%) compared to the building with the lowest percentage of defective modules (4%). The results of this study can contribute to improving awareness of the importance of detecting and maintaining defective PV modules on university campuses and provide a useful basis for securing the sustainability of green campuses.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4513/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4513/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Jangwon Suh; Yosoon Choi;doi: 10.3390/su9071234
Hourly irradiance values are essential data to reasonably estimate the electric power production (EPP) from a photovoltaic (PV) system. Worldwide monthly irradiance data are available from meteorological observation satellites; however, adequate hourly data are not widely available in developing countries or rural areas where PV systems are needed most. Aiming to supply such data, this study compared three different methods (i.e., sunshine hours mean, the SOLPOS algorithm, and the Duffie and Beckman algorithm) to convert the monthly accumulated irradiance data into hourly irradiance data. The monthly accumulated irradiance data at 11 sites in the United States and Korea, acquired from the National Renewable Energy Laboratory, were converted into hourly irradiance data by employing the three methods. The converted hourly data were entered into the System Advisor Model to estimate the monthly total EPP values (henceforth, EPPs) from the PV systems. Each estimated EPP value was compared with those analyzed from the measured hourly data (regarded as the reference values in this study). After considering the errors between the EPPs estimated from the converted hourly irradiance data and measured using the hourly irradiance data, the simulation results with identical PV capacities indicated that the SOLPOS algorithm was the most appropriate conversion method.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/7/1234/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9071234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/7/1234/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9071234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Jangwon Suh; Yosoon Choi;doi: 10.3390/su9071234
Hourly irradiance values are essential data to reasonably estimate the electric power production (EPP) from a photovoltaic (PV) system. Worldwide monthly irradiance data are available from meteorological observation satellites; however, adequate hourly data are not widely available in developing countries or rural areas where PV systems are needed most. Aiming to supply such data, this study compared three different methods (i.e., sunshine hours mean, the SOLPOS algorithm, and the Duffie and Beckman algorithm) to convert the monthly accumulated irradiance data into hourly irradiance data. The monthly accumulated irradiance data at 11 sites in the United States and Korea, acquired from the National Renewable Energy Laboratory, were converted into hourly irradiance data by employing the three methods. The converted hourly data were entered into the System Advisor Model to estimate the monthly total EPP values (henceforth, EPPs) from the PV systems. Each estimated EPP value was compared with those analyzed from the measured hourly data (regarded as the reference values in this study). After considering the errors between the EPPs estimated from the converted hourly irradiance data and measured using the hourly irradiance data, the simulation results with identical PV capacities indicated that the SOLPOS algorithm was the most appropriate conversion method.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/7/1234/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9071234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/7/1234/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9071234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Jangwon Suh;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Jangwon Suh;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Jangwon Suh; Yonghae Jang; Yosoon Choi;doi: 10.3390/su12010276
An interest in floating photovoltaic (PV) is growing drastically worldwide. To evaluate the feasibility of floating PV projects, an accurate estimation of electric power output (EPO) is a crucial first step. This study estimates the EPO of a floating PV system and compares it with the actual EPO observed at the Hapcheon Dam, Korea. Typical meteorological year data and system design parameters were entered into System Advisor Model (SAM) software to estimate the hourly and monthly EPOs. The monthly estimated EPOs were lower than the monthly observed EPOs. This result is ascribed to the cooling effect of the water environment on the floating PV module, which makes the floating PV efficiency higher than overland PV efficiency. Unfortunately, most commercial PV software, including the SAM, was unable to consider this effect in estimating EPO. The error results showed it was possible to estimate the monthly EPOs with an error of less than 15% (simply by simulation) and 9% (when considering the cooling effect: 110% of the estimated monthly EPOs). This indicates that the approach of using empirical results can provide more reliable estimation of EPO in the feasibility assessment stage of floating PV projects. Furthermore, it is necessary to develop simulation software dedicated to the floating PV system.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/276/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010276&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/276/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010276&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Jangwon Suh; Yonghae Jang; Yosoon Choi;doi: 10.3390/su12010276
An interest in floating photovoltaic (PV) is growing drastically worldwide. To evaluate the feasibility of floating PV projects, an accurate estimation of electric power output (EPO) is a crucial first step. This study estimates the EPO of a floating PV system and compares it with the actual EPO observed at the Hapcheon Dam, Korea. Typical meteorological year data and system design parameters were entered into System Advisor Model (SAM) software to estimate the hourly and monthly EPOs. The monthly estimated EPOs were lower than the monthly observed EPOs. This result is ascribed to the cooling effect of the water environment on the floating PV module, which makes the floating PV efficiency higher than overland PV efficiency. Unfortunately, most commercial PV software, including the SAM, was unable to consider this effect in estimating EPO. The error results showed it was possible to estimate the monthly EPOs with an error of less than 15% (simply by simulation) and 9% (when considering the cooling effect: 110% of the estimated monthly EPOs). This indicates that the approach of using empirical results can provide more reliable estimation of EPO in the feasibility assessment stage of floating PV projects. Furthermore, it is necessary to develop simulation software dedicated to the floating PV system.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/276/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010276&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/276/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010276&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Chung-Hyun Lee; Woo-Hyuk Lee; Yosoon Choi; Jangwon Suh; Sung-Min Kim;doi: 10.3390/en16073135
In this study, we developed a 3D-model-based technology that can evaluate solar access by analyzing solar radiation and shade to find the optimal location for a solar system. We developed an algorithm that can quickly calculate viewshed by applying ray-casting technology, which is useful in the field of computer graphics. To apply the developed technology, an unmanned aerial vehicle (DJI MAVIC 3) was used to create a 3D model by taking 320 photos of the Kangwon National University Samcheok campus. To verify the developed technology, a comparison with image-based analysis using a 360-degree camera was performed for 30 points. As a result of applying the developed technology to the study area, it was possible to calculate the solar access for each point. In general, image-based analysis exaggerates the effects of objects such as trees, whereas the developed technique can produce realistic results if the 3D objects were well built. If the technology is further developed in the future, it can be used to increase the efficiency of solar power generation.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3135/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3135/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Chung-Hyun Lee; Woo-Hyuk Lee; Yosoon Choi; Jangwon Suh; Sung-Min Kim;doi: 10.3390/en16073135
In this study, we developed a 3D-model-based technology that can evaluate solar access by analyzing solar radiation and shade to find the optimal location for a solar system. We developed an algorithm that can quickly calculate viewshed by applying ray-casting technology, which is useful in the field of computer graphics. To apply the developed technology, an unmanned aerial vehicle (DJI MAVIC 3) was used to create a 3D model by taking 320 photos of the Kangwon National University Samcheok campus. To verify the developed technology, a comparison with image-based analysis using a 360-degree camera was performed for 30 points. As a result of applying the developed technology to the study area, it was possible to calculate the solar access for each point. In general, image-based analysis exaggerates the effects of objects such as trees, whereas the developed technique can produce realistic results if the 3D objects were well built. If the technology is further developed in the future, it can be used to increase the efficiency of solar power generation.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3135/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3135/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Sung-Min Kim; Yosoon Choi; Jangwon Suh;doi: 10.3390/app10145018
In this study, applications of the Arduino platform in the mining industry were reviewed. Arduino, a representative and popular open-source hardware, can acquire information from various sensors, transmit data using communication technology, and control devices through actuators. The review was conducted by classifying previous studies into three types of Arduino applications: field monitoring systems, wearable systems, and autonomous systems. With regard to field monitoring systems, most studies in mines were classified as atmospheric or geotechnical monitoring. In wearable systems, the health status of the miner was an important consideration, in addition to the environmental conditions of the mine. Arduino can be a useful tool as an initial prototype for autonomous mine systems. Arduino has advantages in that it can be combined with various electronic products and is cost-effective. Therefore, although many studies have been conducted in the laboratory (as opposed to field tests), Arduino applications can be further expanded in the mining field in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10145018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10145018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Sung-Min Kim; Yosoon Choi; Jangwon Suh;doi: 10.3390/app10145018
In this study, applications of the Arduino platform in the mining industry were reviewed. Arduino, a representative and popular open-source hardware, can acquire information from various sensors, transmit data using communication technology, and control devices through actuators. The review was conducted by classifying previous studies into three types of Arduino applications: field monitoring systems, wearable systems, and autonomous systems. With regard to field monitoring systems, most studies in mines were classified as atmospheric or geotechnical monitoring. In wearable systems, the health status of the miner was an important consideration, in addition to the environmental conditions of the mine. Arduino can be a useful tool as an initial prototype for autonomous mine systems. Arduino has advantages in that it can be combined with various electronic products and is cost-effective. Therefore, although many studies have been conducted in the laboratory (as opposed to field tests), Arduino applications can be further expanded in the mining field in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10145018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10145018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Jangwon Suh;doi: 10.3390/app14156574
Studies on solar electric vehicles (EVs) have focused on calculating the power generation in a specific environment without discussing its practical utility. To expand the awareness of the utility of solar EVs, their potential should be evaluated by considering the operation methods of users. This study investigated the photovoltaic (PV) potential of an EV integrated with PV modules while driving on an expressway. Tunnel and shadow areas were identified to determine unpowered areas on the expressway. The PVWatts model was used to evaluate the PV potential by the time of the year. For a single vehicle traveling at 60 km/h on the Donghae expressway section during both the summer and winter solstices, the amount of power generation is within 0.208–0.317 kWh, corresponding to 0.94–1.43% of the electricity consumed for driving. Furthermore, this study assumed that office workers commute on the Donghae expressway. Under the scenario considering the time of operation (traveling to and from work and parking at work) and the shading ratio, the rechargeable amount was more than 10% of the electricity consumption. The results showed that solar roofs are potential charging supplements for EV batteries. This study can provide the efficacy and optimal operation method of solar EVs for commuters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app14156574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app14156574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Jangwon Suh;doi: 10.3390/app14156574
Studies on solar electric vehicles (EVs) have focused on calculating the power generation in a specific environment without discussing its practical utility. To expand the awareness of the utility of solar EVs, their potential should be evaluated by considering the operation methods of users. This study investigated the photovoltaic (PV) potential of an EV integrated with PV modules while driving on an expressway. Tunnel and shadow areas were identified to determine unpowered areas on the expressway. The PVWatts model was used to evaluate the PV potential by the time of the year. For a single vehicle traveling at 60 km/h on the Donghae expressway section during both the summer and winter solstices, the amount of power generation is within 0.208–0.317 kWh, corresponding to 0.94–1.43% of the electricity consumed for driving. Furthermore, this study assumed that office workers commute on the Donghae expressway. Under the scenario considering the time of operation (traveling to and from work and parking at work) and the shading ratio, the rechargeable amount was more than 10% of the electricity consumption. The results showed that solar roofs are potential charging supplements for EV batteries. This study can provide the efficacy and optimal operation method of solar EVs for commuters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app14156574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app14156574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Heejin Seo; Jangwon Suh;doi: 10.3390/app11052178
Smartphones and tablets can be effectively used in the solar photovoltaic (PV) energy field for different purposes because of their versatile capabilities incorporating hardware and software functionalities. These multifarious capabilities enable new approaches for measuring and visualizing data that are seldom available in conventional computing platforms. In this study, 100 accessible smartphone applications (apps) developed in the solar PV energy sector were investigated. The apps were categorized based on their main function as follows: computation of sun position, PV system optimal settings, PV site investigation, potential assessment of PV systems, environmental and economic assessment of PV systems, monitoring and control of PV systems, and education and learning for PV system. Each of these categories was further divided based on principal features or functions. Exemplary apps were chosen for each category and their characteristics and usefulness were investigated. Moreover, the apps for roof or rooftops and those that require built-in or external sensors were organized and analyzed according to their topic and functionality. Limitations regarding app implementation in solar PV and implications for future improvement as an alternative solar design tools were discussed. This study has significance in that it has first presented the current applicability and future perspectives of solar PV smartphone apps. Furthermore, they can be effectively used by the energy prosumers as an analysis tool for energy design due to evolving smartphone sensor technologies current opportunity factors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11052178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11052178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Heejin Seo; Jangwon Suh;doi: 10.3390/app11052178
Smartphones and tablets can be effectively used in the solar photovoltaic (PV) energy field for different purposes because of their versatile capabilities incorporating hardware and software functionalities. These multifarious capabilities enable new approaches for measuring and visualizing data that are seldom available in conventional computing platforms. In this study, 100 accessible smartphone applications (apps) developed in the solar PV energy sector were investigated. The apps were categorized based on their main function as follows: computation of sun position, PV system optimal settings, PV site investigation, potential assessment of PV systems, environmental and economic assessment of PV systems, monitoring and control of PV systems, and education and learning for PV system. Each of these categories was further divided based on principal features or functions. Exemplary apps were chosen for each category and their characteristics and usefulness were investigated. Moreover, the apps for roof or rooftops and those that require built-in or external sensors were organized and analyzed according to their topic and functionality. Limitations regarding app implementation in solar PV and implications for future improvement as an alternative solar design tools were discussed. This study has significance in that it has first presented the current applicability and future perspectives of solar PV smartphone apps. Furthermore, they can be effectively used by the energy prosumers as an analysis tool for energy design due to evolving smartphone sensor technologies current opportunity factors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11052178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11052178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:MDPI AG Authors: Jangwon Suh; Jeffrey Brownson;doi: 10.3390/en9080648
Solar farm suitability in remote areas will involve a multi-criteria evaluation (MCE) process, particularly well suited for the geographic information system (GIS) environment. Photovoltaic (PV) solar farm criteria were evaluated for an island-based case region having complex topographic and regulatory criteria, along with high demand for low-carbon local electricity production: Ulleung Island, Korea. Constraint variables that identified areas forbidden to PV farm development were consolidated into a single binary constraint layer (e.g., environmental regulation, ecological protection, future land use). Six factor variables were selected as influential on-site suitability within the geospatial database to seek out increased annual average power performance and reduced potential investment costs, forming new criteria layers for site suitability: solar irradiation, sunshine hours, average temperature in summer, proximity to transmission line, proximity to roads, and slope. Each factor variable was normalized via a fuzzy membership function (FMF) and parameter setting based on the local characteristics and criteria for a fixed axis PV system. Representative weighting of the relative importance for each factor variable was assigned via pairwise comparison completed by experts. A suitability index (SI) with six factor variables was derived using a weighted fuzzy summation method. Sensitivity analysis was conducted to assess four different SI based on the development scenarios (i.e., the combination of factors being considered). From the resulting map, three highly suitable regions were suggested and validated by comparison with satellite images to confirm the candidate sites for solar farm development. The GIS-MCE method proposed can also be applicable widely to other PV solar farm site selection projects with appropriate adaption for local variables.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/8/648/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9080648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/8/648/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9080648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:MDPI AG Authors: Jangwon Suh; Jeffrey Brownson;doi: 10.3390/en9080648
Solar farm suitability in remote areas will involve a multi-criteria evaluation (MCE) process, particularly well suited for the geographic information system (GIS) environment. Photovoltaic (PV) solar farm criteria were evaluated for an island-based case region having complex topographic and regulatory criteria, along with high demand for low-carbon local electricity production: Ulleung Island, Korea. Constraint variables that identified areas forbidden to PV farm development were consolidated into a single binary constraint layer (e.g., environmental regulation, ecological protection, future land use). Six factor variables were selected as influential on-site suitability within the geospatial database to seek out increased annual average power performance and reduced potential investment costs, forming new criteria layers for site suitability: solar irradiation, sunshine hours, average temperature in summer, proximity to transmission line, proximity to roads, and slope. Each factor variable was normalized via a fuzzy membership function (FMF) and parameter setting based on the local characteristics and criteria for a fixed axis PV system. Representative weighting of the relative importance for each factor variable was assigned via pairwise comparison completed by experts. A suitability index (SI) with six factor variables was derived using a weighted fuzzy summation method. Sensitivity analysis was conducted to assess four different SI based on the development scenarios (i.e., the combination of factors being considered). From the resulting map, three highly suitable regions were suggested and validated by comparison with satellite images to confirm the candidate sites for solar farm development. The GIS-MCE method proposed can also be applicable widely to other PV solar farm site selection projects with appropriate adaption for local variables.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/8/648/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9080648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/8/648/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9080648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Yosoon Choi; Jangwon Suh; Sung-Min Kim;doi: 10.3390/app9091960
In this study, geographic information system (GIS)-based methods and their applications in solar power system planning and design were reviewed. Three types of GIS-based studies, including those on solar radiation mapping, site evaluation, and potential assessment, were considered to elucidate the role of GISs as problem-solving tools in relation to photovoltaic and concentrated solar power systems for the conversion of solar energy into electricity. The review was performed by classifying previous GIS-based studies into several subtopics according to the complexity of the employed GIS-based methods, the type of solar power conversion technology, or the scale of the study area. Because GISs are appropriate for handling geospatial data related to solar resource and site suitability conditions on various scales, the applications of GIS-based methods in solar power system planning and design could be expanded further.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9091960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9091960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Yosoon Choi; Jangwon Suh; Sung-Min Kim;doi: 10.3390/app9091960
In this study, geographic information system (GIS)-based methods and their applications in solar power system planning and design were reviewed. Three types of GIS-based studies, including those on solar radiation mapping, site evaluation, and potential assessment, were considered to elucidate the role of GISs as problem-solving tools in relation to photovoltaic and concentrated solar power systems for the conversion of solar energy into electricity. The review was performed by classifying previous GIS-based studies into several subtopics according to the complexity of the employed GIS-based methods, the type of solar power conversion technology, or the scale of the study area. Because GISs are appropriate for handling geospatial data related to solar resource and site suitability conditions on various scales, the applications of GIS-based methods in solar power system planning and design could be expanded further.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9091960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9091960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu