- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Singapore, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: C...NSF| Collaborative Research: Climate Change Impacts on Forest Biodiversity: Individual Risk to Subcontinental ImpactsDaniel J. Johnson; Jessica Needham; Chonggang Xu; Elias C. Massoud; Stuart J. Davies; Kristina J. Anderson-Teixeira; Sarayudh Bunyavejchewin; Jeffery Q. Chambers; Chia-Hao Chang-Yang; Jyh-Min Chiang; George B. Chuyong; Richard Condit; Susan Cordell; Christine Fletcher; Christian P. Giardina; Thomas W. Giambelluca; Nimal Gunatilleke; Savitri Gunatilleke; Chang-Fu Hsieh; Stephen Hubbell; Faith Inman-Narahari; Abdul Rahman Kassim; Masatoshi Katabuchi; David Kenfack; Creighton M. Litton; Shawn Lum; Mohizah Mohamad; Musalmah Nasardin; Perry S. Ong; Rebecca Ostertag; Lawren Sack; Nathan G. Swenson; I Fang Sun; Sylvester Tan; Duncan W. Thomas; Jill Thompson; Maria Natalia Umaña; Maria Uriarte; Renato Valencia; Sandra Yap; Jess Zimmerman; Nate G. McDowell; Sean M. McMahon;Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent tree survival across the tropics using data from 1,781 species and over 2 million individuals to assess whether tropical forests can be characterized by size-dependent life-history survival strategies. We found that species were classifiable into four 'survival modes' that explain life-history variation that shapes carbon cycling and the relative abundance within forests. Frequently collected functional traits, such as wood density, leaf mass per area and seed mass, were not generally predictive of the survival modes of species. Mean annual temperature and cumulative water deficit predicted the proportion of biomass of survival modes, indicating important links between evolutionary strategies, climate and carbon cycling. The application of survival modes in demographic simulations predicted biomass change across forest sites. Our results reveal globally identifiable size-dependent survival strategies that differ across diverse systems in a consistent way. The abundance of survival modes and interaction with climate ultimately determine forest structure, carbon storage in biomass and future forest trajectories.
NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United Kingdom, United States, United Kingdom, Netherlands, Australia, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER: Ecosystem process..., NSF | COLLABORATIVE RESEARCH: M..., NSF | Controls on the Storage a... +8 projectsNSF| CAREER: Ecosystem processes in regenerating tropical dry forests: linking plant functional traits, stands, and landscapes ,NSF| COLLABORATIVE RESEARCH: MODELING SUCCESSIONAL VEGETATION DYNAMICS IN WET TROPICAL FORESTS AT MULTIPLE SCALES: INTEGRATING NEIGHBORHOOD EFFECTS, FUNCTIONAL TRAITS, AND PHYLOGENY ,NSF| Controls on the Storage and Loss of Soil Organic Carbon with Reforestation of Abandoned Pastures ,NSF| CNH-RCN: Tropical Reforestation Network: Building a Socioecological Understanding of Tropical Reforestation ,NSF| Collaborative Research/LTREB Successional pathways and rates of change in tropical forests of Brazil, Costa Rica, and Mexico ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and Mexico ,NSERC ,NSF| Environmental Heterogeneity and Woody Species Diversity in Low-elevation Tropical Secondary Forests ,NSF| 3rd Collaborative Research Network Program (CRN3) ,NSF| Collaborative Research: Causes and Consequences of Tree Colonization Patterns in Wet Tropical Forests ,NSF| CAREER: Land Use and Environmental Controls on Soil Carbon in Human-Dominated Tropical LandscapesLourens Poorter; Edwin Lebrija-Trejos; Ricardo Gomes César; Whendee L. Silver; Gabriel Dalla Colletta; Erika Marin-Spiotta; André Braga Junqueira; André Braga Junqueira; André Braga Junqueira; Susan G. Letcher; Danaë M. A. Rozendaal; Danaë M. A. Rozendaal; Hans van der Wal; María Uriarte; T. Mitchell Aide; Janet I. Sprent; Arturo Sanchez-Azofeifa; G. Wilson Fernandes; Saara J. DeWalt; Daniel Piotto; Frans Bongers; Susana Ochoa-Gaona; Mira Garner; Patricia Balvanera; Rebecca J. Cole; Casandra Reyes-García; Edith Orihuela-Belmonte; Eduardo A. Pérez-García; Jorge Rodríguez-Velázquez; Justin M. Becknell; Duncan N. L. Menge; José Luis Andrade; Robert Muscarella; Jefferson S. Hall; Benjamin W. Sullivan; Juan Manuel Dupuy; Mário M. Espírito Santo; Peter B. Reich; Peter B. Reich; Yule Roberta Ferreira Nunes; Francisco Mora; Miguel Martínez-Ramos; Arlete Silva de Almeida; Ben de Jong; Sandra M. Durán; Pedro H. S. Brancalion; Marielos Peña-Claros; I. Eunice Romero-Pérez; Lucía Sanaphre-Villanueva; Robin L. Chazdon; Michiel van Breugel; Michiel van Breugel; Jess K. Zimmerman; Maga Gei; Deborah K. Kennard; Nathan G. Swenson; Vanessa Granda Moser; José Luis Hernández-Stefanoni; George A. L. Cabral; Daisy H. Dent; Daisy H. Dent; Vanessa de Souza Moreno; Julie S. Denslow; Rodrigo Muñoz; Jennifer S. Powers; Jennifer S. Powers; Bryan Finegan; Jorge A. Meave; Madelon Lohbeck; Madelon Lohbeck; Hans F. M. Vester; Jarcilene S. Almeida-Cortez; Ima Célia Guimarães Vieira; Naomi B. Schwartz; Maria das Dores Magalhães Veloso; Rebecca Ostertag;The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2qt956r8Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0559-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2qt956r8Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0559-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Publisher:Public Library of Science (PLoS) Funded by:NSF | IMUA III: Pacific High Is..., NSF | IMUA 2: NSF Hawaii EPSCoRNSF| IMUA III: Pacific High Island Evolutionary Biogeography: Impacts of Invasive Species, Anthropogenic Activity and Climate Change on Hawaiian Focal Species ,NSF| IMUA 2: NSF Hawaii EPSCoRRebecca Ostertag; Christian P. Giardina; Faith Inman-Narahari; Lawren Sack; Susan Cordell;The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for links among species diversity, environmental variation and ecosystem function.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0103268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0103268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Wiley Authors: Whendee L. Silver; Erika Marin-Spiotta; Rebecca Ostertag;doi: 10.1890/06-1268
pmid: 17494400
Primary tropical forests are renowned for their high biodiversity and carbon storage, and considerable research has documented both species and carbon losses with deforestation and agricultural land uses. Economic drivers are now leading to the abandonment of agricultural lands, and the area in secondary forests is increasing. We know little about how long it takes for these ecosystems to achieve the structural and compositional characteristics of primary forests. In this study, we examine changes in plant species composition and aboveground biomass during eight decades of tropical secondary succession in Puerto Rico, and compare these patterns with primary forests. Using a well-replicated chronosequence approach, we sampled primary forests and secondary forests established 10, 20, 30, 60, and 80 years ago on abandoned pastures. Tree species composition in all secondary forests was different from that of primary forests and could be divided into early (10-, 20-, and 30-year) vs. late (60- and 80-year) successional phases. The highest rates of aboveground biomass accumulation occurred in the first 20 years, with rates of C sequestration peaking at 6.7 +/- 0.5 Mg C x ha(-1) x yr(-1). Reforestation of pastures resulted in an accumulation of 125 Mg C/ha in aboveground standing live biomass over 80 years. The 80 year-old secondary forests had greater biomass than the primary forests, due to the replacement of woody species by palms in the primary forests. Our results show that these new ecosystems have different species composition, but similar species richness, and significant potential for carbon sequestration, compared to remnant primary forests.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-1268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu125 citations 125 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-1268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Australia, United States, India, Brazil, India, Netherlands, China (People's Republic of), Brazil, China (People's Republic of), United KingdomPublisher:Wiley Funded by:EC | GEM-TRAITEC| GEM-TRAITAuthors: Alexandre Adalardo de Oliveira; Xihua Wang; Jonathan Myers; Geoffrey G. Parker; +116 AuthorsAlexandre Adalardo de Oliveira; Xihua Wang; Jonathan Myers; Geoffrey G. Parker; Norman A. Bourg; Jill Thompson; Margaret F. Kinnaird; Keith Clay; Xiaojun Du; Dairon Cárdenas; Vojtech Novotny; Jitendra Kumar; Christine Fletcher; Raman Sukumar; George B. Chuyong; Billy C.H. Hau; Patrick A. Jansen; Patrick A. Jansen; Nathalie Butt; Nathalie Butt; Sarayudh Bunyavejchewin; Han Xu; Stuart J. Davies; Stuart J. Davies; Keping Ma; Rebecca Ostertag; Xiaobao Deng; Yide Li; William W. Hargrove; George D. Weiblen; Gregory S. Gilbert; Gregory S. Gilbert; Christian P. Giardina; Rafizah Mat Serudin; Takashi Mizuno; Michael D. Morecroft; Gunter A. Fischer; Jean-Remy Makana; Stephen P. Hubbell; Stephen P. Hubbell; Faith Inman-Narahari; Moses N. Sainge; Yves Basset; Xiangcheng Mi; Daniel J. Johnson; Richard P. Phillips; Fangliang He; David F. R. P. Burslem; Mingxi Jiang; H. S. Suresh; Matteo Detto; Witchaphart Sungpalee; Yadvinder Malhi; Xugao Wang; Min Cao; Robert W. Howe; Sean M. McMahon; Sean M. McMahon; Shawn K. Y. Lum; David Kenfack; David Kenfack; James A. Lutz; Amy Wolf; Kamariah Abu Salim; Warren Y. Brockelman; Perry S. Ong; H. S. Dattaraja; Tomáš Vrška; David L. Erikson; Corneille E. N. Ewango; I-Fang Sun; Lisa Korte; S. Joseph Wright; Susan Cordell; Jan den Ouden; Lawren Sack; Andrew J. Larson; Sandra L. Yap; Benjamin L. Turner; Jess K. Zimmerman; Abdul Rahman Kassim; Amy C. Bennett; Sylvester Tan; Angelica M. Almeyda Zambrano; Angelica M. Almeyda Zambrano; Angelica M. Almeyda Zambrano; Shirong Liu; Staline Kibet; Helene C. Muller-Landau; María Uriarte; Renato Valencia; Nimal Gunatilleke; Alfonso Alonso; Savitri Gunatilleke; Marta I. Vallejo; Duncan W. Thomas; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Zhanqing Hao; Robin B. Foster; Erika Gonzalez-Akre; Kriangsak Sri-ngernyuang; Eben N. Broadbent; Eben N. Broadbent; Eben N. Broadbent; Weiguo Sang; Hervé Memiaghe; Forrest M. Hoffman; Terese B. Hart; Alvaro Duque; Sean C. Thomas; Alberto Vicentini; Mamoru Kanzaki; Xiankun Li; David A. Orwig; Jennifer L. Baltzer; Toby R. Marthews; Damian M. Maddalena; Kamil Král; William J. McShea;AbstractGlobal change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long‐term forest dynamics research sites (CTFS‐ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS‐ForestGEO spans 25°S–61°N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS‐ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ±30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m−2 yr−1 and 3.1 g S m−2 yr−1), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS‐ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS‐ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/3rs0b0skData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 505 citations 505 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/3rs0b0skData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Brazil, United Kingdom, Brazil, SingaporePublisher:Wiley Funded by:NSF | Integrating functional, p..., NSF | Dimensions IRCN: Diversit...NSF| Integrating functional, phylogenetic and genetic components of diversity for an improved understanding of forest structure, dynamics, and change ,NSF| Dimensions IRCN: Diversity and Forest Change: Characterizing functional, phylogenetic and genetic contributions to diversity gradients and dynamics in tree communitiesAuthors: Geoffrey G. Parker; Kristina J. Anderson-Teixeira; Michael D. Morecroft; Perry S. Ong; +95 AuthorsGeoffrey G. Parker; Kristina J. Anderson-Teixeira; Michael D. Morecroft; Perry S. Ong; I-Fang Sun; George B. Chuyong; Sarayudh Bunyavejchewin; Keith Clay; Takuo Yamakura; George D. Weiblen; Tucker J. Furniss; Ana Andrade; Vojtech Novotny; James A. Freund; Christine Fletcher; María Uriarte; Kuo-Jung Chao; Richard P. Phillips; Wei-Chun Chao; Alfonso Alonso; Mark E. Swanson; Norman A. Bourg; Norman A. Bourg; Gunter A. Fischer; Jean-Remy Makana; Jonathan Myers; Rajit Patankar; David A. Orwig; Jennifer L. Baltzer; Stephen P. Hubbell; Paul M. Musili; Xiangcheng Mi; Sean M. McMahon; Ke Cao; Terese B. Hart; Lawren Sack; Sandra L. Yap; David Kenfack; Yadvinder Malhi; Sara J. Germain; Jill Thompson; David Janík; Andy Hector; Min Cao; James A. Lutz; Sylvester Tan; Kendall M. L. Becker; Erika M. Blomdahl; C. Alina Cansler; Billy C.H. Hau; Jyh-Min Chiang; Sheng-Hsin Su; Guo-Zhang Michael Song; Fangliang He; H. S. Dattaraja; Raman Sukumar; Duncan W. Thomas; Hebbalalu S. Suresh; Dairon Cárdenas; Stuart J. Davies; Gregory S. Gilbert; Alvaro Duque; Chengjin Chu; Alberto Vicentini; Yide Li; Kamil Král; William J. McShea; Chang-Fu Hsieh; Yiching Lin; Corneille E. N. Ewango; Daniel J. Johnson; Andrew J. Larson; Tomáš Vrška; Susan Cordell; Renato Valencia; Xugao Wang; Lisa Korte; Zhanqing Hao; Abdul Rahman Kassim; Yue-Hua Hu; Shu-Hui Wu; Richard Condit; Jess K. Zimmerman; Alexandre Adalardo de Oliveira; Faith Inman-Narahari; Glen Reynolds; Amy Wolf; Christian P. Giardina; David F. R. P. Burslem; Robert W. Howe; Shawn K. Y. Lum; Shirong Liu; David Allen; Han Xu; Keping Ma; Rebecca Ostertag; Li-Wan Chang; Hervé Memiaghe; Akira Itoh;doi: 10.1111/geb.12747
handle: 10356/140605
AbstractAimTo examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes.LocationGlobal.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsWe examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass.ResultsAveraged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r2 = .62,p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r2 = .45,p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees (r2 = .33,p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species (r2 = .17,p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r2 = .46,p < .001), as did forest density (r2 = .31,p < .001). Forest structural complexity increased with increasing absolute latitude (r2 = .26,p < .001).Main conclusionsBecause large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.
NERC Open Research A... arrow_drop_down Global Ecology and BiogeographyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 395 citations 395 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Global Ecology and BiogeographyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Italy, Portugal, South Africa, Spain, Portugal, Spain, Italy, Argentina, Italy, Germany, Finland, Argentina, Spain, United States, Australia, Brazil, Italy, GermanyPublisher:Wiley Funded by:EC | BioFUNCEC| BioFUNCKahua Julian; Margaret M. Mayfield; Joaquim S. Silva; Joaquim S. Silva; Maia L. Raymundo; Rebecca Ostertag; Tiina Ylioja; Nicola La Porta; Hamish G. Maule; Hélia Marchante; Hélia Marchante; Nicole DiManno; A. Saldaña; Ana Sofia Vaz; Orna Reisman-Berman; Josef Urban; Josef Urban; Ingrid M. Parker; Álvaro Bayón; Mariana C. Chiuffo; Oscar Godoy; Daniel J. Metcalfe; Luke J. Potgieter; M. Cristina Monteverdi; Rafael D. Zenni; Marcela van Loo; Donald Rayome; Susanne Kandert; Ruben E. Roos; Peter J. Bellingham; Duane A. Peltzer; Álvaro Alonso; Pilar Castro-Díez; Joana R. Vicente; Joana R. Vicente; Melinda S. Trudgen; Melinda S. Trudgen; Martin A. Nuñez; Cristina Aponte; David M. Richardson; Agostina Torres; Montserrat Vilà; Ross T. Shackleton;doi: 10.1111/brv.12511
pmid: 30974048
pmc: PMC6850375
handle: 10261/189851 , 11336/158823 , 10449/67570 , 10017/37547 , 11343/250944 , 10019.1/110774 , 10019.1/117104
doi: 10.1111/brv.12511
pmid: 30974048
pmc: PMC6850375
handle: 10261/189851 , 11336/158823 , 10449/67570 , 10017/37547 , 11343/250944 , 10019.1/110774 , 10019.1/117104
ABSTRACTNon‐native tree (NNT) species have been transported worldwide to create or enhance services that are fundamental for human well‐being, such as timber provision, erosion control or ornamental value; yet NNTs can also produce undesired effects, such as fire proneness or pollen allergenicity. Despite the variety of effects that NNTs have on multiple ecosystem services, a global quantitative assessment of their costs and benefits is still lacking. Such information is critical for decision‐making, management and sustainable exploitation of NNTs. We present here a global assessment of NNT effects on the three main categories of ecosystem services, including regulating (RES), provisioning (PES) and cultural services (CES), and on an ecosystem disservice (EDS), i.e. pollen allergenicity. By searching the scientific literature, country forestry reports, and social media, we compiled a global data set of 1683 case studies from over 125 NNT species, covering 44 countries, all continents but Antarctica, and seven biomes. Using different meta‐analysis techniques, we found that, while NNTs increase most RES (e.g. climate regulation, soil erosion control, fertility and formation), they decrease PES (e.g. NNTs contribute less than native trees to global timber provision). Also, they have different effects on CES (e.g. increase aesthetic values but decrease scientific interest), and no effect on the EDS considered. NNT effects on each ecosystem (dis)service showed a strong context dependency, varying across NNT types, biomes and socio‐economic conditions. For instance, some RES are increased more by NNTs able to fix atmospheric nitrogen, and when the ecosystem is located in low‐latitude biomes; some CES are increased more by NNTs in less‐wealthy countries or in countries with higher gross domestic products. The effects of NNTs on several ecosystem (dis)services exhibited some synergies (e.g. among soil fertility, soil formation and climate regulation or between aesthetic values and pollen allergenicity), but also trade‐offs (e.g. between fire regulation and soil erosion control). Our analyses provide a quantitative understanding of the complex synergies, trade‐offs and context dependencies involved for the effects of NNTs that is essential for attaining a sustained provision of ecosystem services.
Archivio istituziona... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2019Full-Text: http://hdl.handle.net/10449/67570Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/8bz1s7vfData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/250944Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedUniversidade de Lisboa: Repositório.ULArticle . 2019License: CC BY NC NDData sources: Universidade de Lisboa: Repositório.ULGöttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 196 citations 196 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 206visibility views 206 download downloads 180 Powered bymore_vert Archivio istituziona... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2019Full-Text: http://hdl.handle.net/10449/67570Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/8bz1s7vfData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/250944Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedUniversidade de Lisboa: Repositório.ULArticle . 2019License: CC BY NC NDData sources: Universidade de Lisboa: Repositório.ULGöttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Funded by:NSF | IMUA III: Pacific High Is..., NSF | Investing in Multidiscipl..., NSF | IMUA 2: NSF Hawaii EPSCoR +1 projectsNSF| IMUA III: Pacific High Island Evolutionary Biogeography: Impacts of Invasive Species, Anthropogenic Activity and Climate Change on Hawaiian Focal Species ,NSF| Investing in Multidisciplinary University Activities through Hawaii EPSCoR ,NSF| IMUA 2: NSF Hawaii EPSCoR ,NSF| CAREER: Significance of Foliar Nitrogen and Phosphorus Accumulation in Tropical ForestsAuthors: Nicole DiManno; Rebecca Ostertag;pmid: 26404491
Nitrogen (N) and phosphorus (P) are the most important nutrients involved in plant reproduction and typically the most limiting in terrestrial ecosystems. The natural soil fertility gradient of the Hawaiian archipelago, in which younger islands are N limited and older islands are P limited, provides a model system to examine questions regarding allocation of nutrients. Using fertilized plots (+N or +P) at the extreme sites of the Hawaiian archipelago, vegetative productivity (e.g., net primary productivity, growth, and litterfall) and foliar nutrient responses have previously been studied for the dominant canopy tree, Metrosideros polymorpha. Here, we investigated whether the reproductive response of M. polymorpha mirrors the previously found vegetative productivity and foliar nutrient responses, by quantifying: (1) inflorescence and seed productivity, and (2) nutrient concentration of reproductive structures. Fertilization with N and P did not significantly affect the productivity of inflorescences or seeds, or seed viability at either site. However, nutrient concentrations increased after fertilization; %P increased in inflorescences in the +P treatment at the P-limited site. Seeds and inflorescences generally contained higher nutrient concentrations than leaves at both sites. Unlike foliar data, reproductive strategies of M. polymorpha differed depending on soil nutrient limitation with emphasis on quality (higher seed viability/greater nutrient concentrations) at the P-limited site. We suggest that in response to P additions M. polymorpha employs a nutrient conservation strategy for its inflorescences and an investment strategy for its seeds. Examining N and P simultaneously challenges a basic assumption that reproductive allocation follows a similar pattern to the often measured aboveground productivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3449-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3449-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, France, United StatesPublisher:Wiley Authors: Camille Piponiot; Kristina J. Anderson‐Teixeira; Stuart J. Davies; David Allen; +56 AuthorsCamille Piponiot; Kristina J. Anderson‐Teixeira; Stuart J. Davies; David Allen; Norman A. Bourg; David F. R. P. Burslem; Dairon Cárdenas; Chia‐Hao Chang‐Yang; George Chuyong; Susan Cordell; Handanakere Shivaramaiah Dattaraja; Álvaro Duque; Sisira Ediriweera; Corneille Ewango; Zacky Ezedin; Jonah Filip; Christian P. Giardina; Robert Howe; Chang‐Fu Hsieh; Stephen P. Hubbell; Faith M. Inman‐Narahari; Akira Itoh; David Janík; David Kenfack; Kamil Král; James A. Lutz; Jean‐Remy Makana; Sean M. McMahon; William McShea; Xiangcheng Mi; Mohizah Bt. Mohamad; Vojtěch Novotný; Michael J. O'Brien; Rebecca Ostertag; Geoffrey Parker; Rolando Pérez; Haibao Ren; Glen Reynolds; Mohamad Danial Md Sabri; Lawren Sack; Ankur Shringi; Sheng‐Hsin Su; Raman Sukumar; I‐Fang Sun; Hebbalalu S. Suresh; Duncan W. Thomas; Jill Thompson; Maria Uriarte; John Vandermeer; Yunquan Wang; Ian M. Ware; George D. Weiblen; Timothy J. S. Whitfeld; Amy Wolf; Tze Leong Yao; Mingjian Yu; Zuoqiang Yuan; Jess K. Zimmerman; Daniel Zuleta; Helene C. Muller‐Landau;Summary Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among‐site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large‐scale (4–52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size‐related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1–10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate‐driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.
New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Singapore, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: C...NSF| Collaborative Research: Climate Change Impacts on Forest Biodiversity: Individual Risk to Subcontinental ImpactsDaniel J. Johnson; Jessica Needham; Chonggang Xu; Elias C. Massoud; Stuart J. Davies; Kristina J. Anderson-Teixeira; Sarayudh Bunyavejchewin; Jeffery Q. Chambers; Chia-Hao Chang-Yang; Jyh-Min Chiang; George B. Chuyong; Richard Condit; Susan Cordell; Christine Fletcher; Christian P. Giardina; Thomas W. Giambelluca; Nimal Gunatilleke; Savitri Gunatilleke; Chang-Fu Hsieh; Stephen Hubbell; Faith Inman-Narahari; Abdul Rahman Kassim; Masatoshi Katabuchi; David Kenfack; Creighton M. Litton; Shawn Lum; Mohizah Mohamad; Musalmah Nasardin; Perry S. Ong; Rebecca Ostertag; Lawren Sack; Nathan G. Swenson; I Fang Sun; Sylvester Tan; Duncan W. Thomas; Jill Thompson; Maria Natalia Umaña; Maria Uriarte; Renato Valencia; Sandra Yap; Jess Zimmerman; Nate G. McDowell; Sean M. McMahon;Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent tree survival across the tropics using data from 1,781 species and over 2 million individuals to assess whether tropical forests can be characterized by size-dependent life-history survival strategies. We found that species were classifiable into four 'survival modes' that explain life-history variation that shapes carbon cycling and the relative abundance within forests. Frequently collected functional traits, such as wood density, leaf mass per area and seed mass, were not generally predictive of the survival modes of species. Mean annual temperature and cumulative water deficit predicted the proportion of biomass of survival modes, indicating important links between evolutionary strategies, climate and carbon cycling. The application of survival modes in demographic simulations predicted biomass change across forest sites. Our results reveal globally identifiable size-dependent survival strategies that differ across diverse systems in a consistent way. The abundance of survival modes and interaction with climate ultimately determine forest structure, carbon storage in biomass and future forest trajectories.
NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United Kingdom, United States, United Kingdom, Netherlands, Australia, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER: Ecosystem process..., NSF | COLLABORATIVE RESEARCH: M..., NSF | Controls on the Storage a... +8 projectsNSF| CAREER: Ecosystem processes in regenerating tropical dry forests: linking plant functional traits, stands, and landscapes ,NSF| COLLABORATIVE RESEARCH: MODELING SUCCESSIONAL VEGETATION DYNAMICS IN WET TROPICAL FORESTS AT MULTIPLE SCALES: INTEGRATING NEIGHBORHOOD EFFECTS, FUNCTIONAL TRAITS, AND PHYLOGENY ,NSF| Controls on the Storage and Loss of Soil Organic Carbon with Reforestation of Abandoned Pastures ,NSF| CNH-RCN: Tropical Reforestation Network: Building a Socioecological Understanding of Tropical Reforestation ,NSF| Collaborative Research/LTREB Successional pathways and rates of change in tropical forests of Brazil, Costa Rica, and Mexico ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and Mexico ,NSERC ,NSF| Environmental Heterogeneity and Woody Species Diversity in Low-elevation Tropical Secondary Forests ,NSF| 3rd Collaborative Research Network Program (CRN3) ,NSF| Collaborative Research: Causes and Consequences of Tree Colonization Patterns in Wet Tropical Forests ,NSF| CAREER: Land Use and Environmental Controls on Soil Carbon in Human-Dominated Tropical LandscapesLourens Poorter; Edwin Lebrija-Trejos; Ricardo Gomes César; Whendee L. Silver; Gabriel Dalla Colletta; Erika Marin-Spiotta; André Braga Junqueira; André Braga Junqueira; André Braga Junqueira; Susan G. Letcher; Danaë M. A. Rozendaal; Danaë M. A. Rozendaal; Hans van der Wal; María Uriarte; T. Mitchell Aide; Janet I. Sprent; Arturo Sanchez-Azofeifa; G. Wilson Fernandes; Saara J. DeWalt; Daniel Piotto; Frans Bongers; Susana Ochoa-Gaona; Mira Garner; Patricia Balvanera; Rebecca J. Cole; Casandra Reyes-García; Edith Orihuela-Belmonte; Eduardo A. Pérez-García; Jorge Rodríguez-Velázquez; Justin M. Becknell; Duncan N. L. Menge; José Luis Andrade; Robert Muscarella; Jefferson S. Hall; Benjamin W. Sullivan; Juan Manuel Dupuy; Mário M. Espírito Santo; Peter B. Reich; Peter B. Reich; Yule Roberta Ferreira Nunes; Francisco Mora; Miguel Martínez-Ramos; Arlete Silva de Almeida; Ben de Jong; Sandra M. Durán; Pedro H. S. Brancalion; Marielos Peña-Claros; I. Eunice Romero-Pérez; Lucía Sanaphre-Villanueva; Robin L. Chazdon; Michiel van Breugel; Michiel van Breugel; Jess K. Zimmerman; Maga Gei; Deborah K. Kennard; Nathan G. Swenson; Vanessa Granda Moser; José Luis Hernández-Stefanoni; George A. L. Cabral; Daisy H. Dent; Daisy H. Dent; Vanessa de Souza Moreno; Julie S. Denslow; Rodrigo Muñoz; Jennifer S. Powers; Jennifer S. Powers; Bryan Finegan; Jorge A. Meave; Madelon Lohbeck; Madelon Lohbeck; Hans F. M. Vester; Jarcilene S. Almeida-Cortez; Ima Célia Guimarães Vieira; Naomi B. Schwartz; Maria das Dores Magalhães Veloso; Rebecca Ostertag;The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2qt956r8Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0559-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2qt956r8Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0559-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Publisher:Public Library of Science (PLoS) Funded by:NSF | IMUA III: Pacific High Is..., NSF | IMUA 2: NSF Hawaii EPSCoRNSF| IMUA III: Pacific High Island Evolutionary Biogeography: Impacts of Invasive Species, Anthropogenic Activity and Climate Change on Hawaiian Focal Species ,NSF| IMUA 2: NSF Hawaii EPSCoRRebecca Ostertag; Christian P. Giardina; Faith Inman-Narahari; Lawren Sack; Susan Cordell;The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for links among species diversity, environmental variation and ecosystem function.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0103268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0103268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Wiley Authors: Whendee L. Silver; Erika Marin-Spiotta; Rebecca Ostertag;doi: 10.1890/06-1268
pmid: 17494400
Primary tropical forests are renowned for their high biodiversity and carbon storage, and considerable research has documented both species and carbon losses with deforestation and agricultural land uses. Economic drivers are now leading to the abandonment of agricultural lands, and the area in secondary forests is increasing. We know little about how long it takes for these ecosystems to achieve the structural and compositional characteristics of primary forests. In this study, we examine changes in plant species composition and aboveground biomass during eight decades of tropical secondary succession in Puerto Rico, and compare these patterns with primary forests. Using a well-replicated chronosequence approach, we sampled primary forests and secondary forests established 10, 20, 30, 60, and 80 years ago on abandoned pastures. Tree species composition in all secondary forests was different from that of primary forests and could be divided into early (10-, 20-, and 30-year) vs. late (60- and 80-year) successional phases. The highest rates of aboveground biomass accumulation occurred in the first 20 years, with rates of C sequestration peaking at 6.7 +/- 0.5 Mg C x ha(-1) x yr(-1). Reforestation of pastures resulted in an accumulation of 125 Mg C/ha in aboveground standing live biomass over 80 years. The 80 year-old secondary forests had greater biomass than the primary forests, due to the replacement of woody species by palms in the primary forests. Our results show that these new ecosystems have different species composition, but similar species richness, and significant potential for carbon sequestration, compared to remnant primary forests.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-1268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu125 citations 125 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-1268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Australia, United States, India, Brazil, India, Netherlands, China (People's Republic of), Brazil, China (People's Republic of), United KingdomPublisher:Wiley Funded by:EC | GEM-TRAITEC| GEM-TRAITAuthors: Alexandre Adalardo de Oliveira; Xihua Wang; Jonathan Myers; Geoffrey G. Parker; +116 AuthorsAlexandre Adalardo de Oliveira; Xihua Wang; Jonathan Myers; Geoffrey G. Parker; Norman A. Bourg; Jill Thompson; Margaret F. Kinnaird; Keith Clay; Xiaojun Du; Dairon Cárdenas; Vojtech Novotny; Jitendra Kumar; Christine Fletcher; Raman Sukumar; George B. Chuyong; Billy C.H. Hau; Patrick A. Jansen; Patrick A. Jansen; Nathalie Butt; Nathalie Butt; Sarayudh Bunyavejchewin; Han Xu; Stuart J. Davies; Stuart J. Davies; Keping Ma; Rebecca Ostertag; Xiaobao Deng; Yide Li; William W. Hargrove; George D. Weiblen; Gregory S. Gilbert; Gregory S. Gilbert; Christian P. Giardina; Rafizah Mat Serudin; Takashi Mizuno; Michael D. Morecroft; Gunter A. Fischer; Jean-Remy Makana; Stephen P. Hubbell; Stephen P. Hubbell; Faith Inman-Narahari; Moses N. Sainge; Yves Basset; Xiangcheng Mi; Daniel J. Johnson; Richard P. Phillips; Fangliang He; David F. R. P. Burslem; Mingxi Jiang; H. S. Suresh; Matteo Detto; Witchaphart Sungpalee; Yadvinder Malhi; Xugao Wang; Min Cao; Robert W. Howe; Sean M. McMahon; Sean M. McMahon; Shawn K. Y. Lum; David Kenfack; David Kenfack; James A. Lutz; Amy Wolf; Kamariah Abu Salim; Warren Y. Brockelman; Perry S. Ong; H. S. Dattaraja; Tomáš Vrška; David L. Erikson; Corneille E. N. Ewango; I-Fang Sun; Lisa Korte; S. Joseph Wright; Susan Cordell; Jan den Ouden; Lawren Sack; Andrew J. Larson; Sandra L. Yap; Benjamin L. Turner; Jess K. Zimmerman; Abdul Rahman Kassim; Amy C. Bennett; Sylvester Tan; Angelica M. Almeyda Zambrano; Angelica M. Almeyda Zambrano; Angelica M. Almeyda Zambrano; Shirong Liu; Staline Kibet; Helene C. Muller-Landau; María Uriarte; Renato Valencia; Nimal Gunatilleke; Alfonso Alonso; Savitri Gunatilleke; Marta I. Vallejo; Duncan W. Thomas; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Zhanqing Hao; Robin B. Foster; Erika Gonzalez-Akre; Kriangsak Sri-ngernyuang; Eben N. Broadbent; Eben N. Broadbent; Eben N. Broadbent; Weiguo Sang; Hervé Memiaghe; Forrest M. Hoffman; Terese B. Hart; Alvaro Duque; Sean C. Thomas; Alberto Vicentini; Mamoru Kanzaki; Xiankun Li; David A. Orwig; Jennifer L. Baltzer; Toby R. Marthews; Damian M. Maddalena; Kamil Král; William J. McShea;AbstractGlobal change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long‐term forest dynamics research sites (CTFS‐ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS‐ForestGEO spans 25°S–61°N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS‐ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ±30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m−2 yr−1 and 3.1 g S m−2 yr−1), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS‐ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS‐ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/3rs0b0skData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 505 citations 505 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/3rs0b0skData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Brazil, United Kingdom, Brazil, SingaporePublisher:Wiley Funded by:NSF | Integrating functional, p..., NSF | Dimensions IRCN: Diversit...NSF| Integrating functional, phylogenetic and genetic components of diversity for an improved understanding of forest structure, dynamics, and change ,NSF| Dimensions IRCN: Diversity and Forest Change: Characterizing functional, phylogenetic and genetic contributions to diversity gradients and dynamics in tree communitiesAuthors: Geoffrey G. Parker; Kristina J. Anderson-Teixeira; Michael D. Morecroft; Perry S. Ong; +95 AuthorsGeoffrey G. Parker; Kristina J. Anderson-Teixeira; Michael D. Morecroft; Perry S. Ong; I-Fang Sun; George B. Chuyong; Sarayudh Bunyavejchewin; Keith Clay; Takuo Yamakura; George D. Weiblen; Tucker J. Furniss; Ana Andrade; Vojtech Novotny; James A. Freund; Christine Fletcher; María Uriarte; Kuo-Jung Chao; Richard P. Phillips; Wei-Chun Chao; Alfonso Alonso; Mark E. Swanson; Norman A. Bourg; Norman A. Bourg; Gunter A. Fischer; Jean-Remy Makana; Jonathan Myers; Rajit Patankar; David A. Orwig; Jennifer L. Baltzer; Stephen P. Hubbell; Paul M. Musili; Xiangcheng Mi; Sean M. McMahon; Ke Cao; Terese B. Hart; Lawren Sack; Sandra L. Yap; David Kenfack; Yadvinder Malhi; Sara J. Germain; Jill Thompson; David Janík; Andy Hector; Min Cao; James A. Lutz; Sylvester Tan; Kendall M. L. Becker; Erika M. Blomdahl; C. Alina Cansler; Billy C.H. Hau; Jyh-Min Chiang; Sheng-Hsin Su; Guo-Zhang Michael Song; Fangliang He; H. S. Dattaraja; Raman Sukumar; Duncan W. Thomas; Hebbalalu S. Suresh; Dairon Cárdenas; Stuart J. Davies; Gregory S. Gilbert; Alvaro Duque; Chengjin Chu; Alberto Vicentini; Yide Li; Kamil Král; William J. McShea; Chang-Fu Hsieh; Yiching Lin; Corneille E. N. Ewango; Daniel J. Johnson; Andrew J. Larson; Tomáš Vrška; Susan Cordell; Renato Valencia; Xugao Wang; Lisa Korte; Zhanqing Hao; Abdul Rahman Kassim; Yue-Hua Hu; Shu-Hui Wu; Richard Condit; Jess K. Zimmerman; Alexandre Adalardo de Oliveira; Faith Inman-Narahari; Glen Reynolds; Amy Wolf; Christian P. Giardina; David F. R. P. Burslem; Robert W. Howe; Shawn K. Y. Lum; Shirong Liu; David Allen; Han Xu; Keping Ma; Rebecca Ostertag; Li-Wan Chang; Hervé Memiaghe; Akira Itoh;doi: 10.1111/geb.12747
handle: 10356/140605
AbstractAimTo examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes.LocationGlobal.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsWe examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass.ResultsAveraged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r2 = .62,p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r2 = .45,p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees (r2 = .33,p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species (r2 = .17,p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r2 = .46,p < .001), as did forest density (r2 = .31,p < .001). Forest structural complexity increased with increasing absolute latitude (r2 = .26,p < .001).Main conclusionsBecause large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.
NERC Open Research A... arrow_drop_down Global Ecology and BiogeographyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 395 citations 395 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Global Ecology and BiogeographyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Italy, Portugal, South Africa, Spain, Portugal, Spain, Italy, Argentina, Italy, Germany, Finland, Argentina, Spain, United States, Australia, Brazil, Italy, GermanyPublisher:Wiley Funded by:EC | BioFUNCEC| BioFUNCKahua Julian; Margaret M. Mayfield; Joaquim S. Silva; Joaquim S. Silva; Maia L. Raymundo; Rebecca Ostertag; Tiina Ylioja; Nicola La Porta; Hamish G. Maule; Hélia Marchante; Hélia Marchante; Nicole DiManno; A. Saldaña; Ana Sofia Vaz; Orna Reisman-Berman; Josef Urban; Josef Urban; Ingrid M. Parker; Álvaro Bayón; Mariana C. Chiuffo; Oscar Godoy; Daniel J. Metcalfe; Luke J. Potgieter; M. Cristina Monteverdi; Rafael D. Zenni; Marcela van Loo; Donald Rayome; Susanne Kandert; Ruben E. Roos; Peter J. Bellingham; Duane A. Peltzer; Álvaro Alonso; Pilar Castro-Díez; Joana R. Vicente; Joana R. Vicente; Melinda S. Trudgen; Melinda S. Trudgen; Martin A. Nuñez; Cristina Aponte; David M. Richardson; Agostina Torres; Montserrat Vilà; Ross T. Shackleton;doi: 10.1111/brv.12511
pmid: 30974048
pmc: PMC6850375
handle: 10261/189851 , 11336/158823 , 10449/67570 , 10017/37547 , 11343/250944 , 10019.1/110774 , 10019.1/117104
doi: 10.1111/brv.12511
pmid: 30974048
pmc: PMC6850375
handle: 10261/189851 , 11336/158823 , 10449/67570 , 10017/37547 , 11343/250944 , 10019.1/110774 , 10019.1/117104
ABSTRACTNon‐native tree (NNT) species have been transported worldwide to create or enhance services that are fundamental for human well‐being, such as timber provision, erosion control or ornamental value; yet NNTs can also produce undesired effects, such as fire proneness or pollen allergenicity. Despite the variety of effects that NNTs have on multiple ecosystem services, a global quantitative assessment of their costs and benefits is still lacking. Such information is critical for decision‐making, management and sustainable exploitation of NNTs. We present here a global assessment of NNT effects on the three main categories of ecosystem services, including regulating (RES), provisioning (PES) and cultural services (CES), and on an ecosystem disservice (EDS), i.e. pollen allergenicity. By searching the scientific literature, country forestry reports, and social media, we compiled a global data set of 1683 case studies from over 125 NNT species, covering 44 countries, all continents but Antarctica, and seven biomes. Using different meta‐analysis techniques, we found that, while NNTs increase most RES (e.g. climate regulation, soil erosion control, fertility and formation), they decrease PES (e.g. NNTs contribute less than native trees to global timber provision). Also, they have different effects on CES (e.g. increase aesthetic values but decrease scientific interest), and no effect on the EDS considered. NNT effects on each ecosystem (dis)service showed a strong context dependency, varying across NNT types, biomes and socio‐economic conditions. For instance, some RES are increased more by NNTs able to fix atmospheric nitrogen, and when the ecosystem is located in low‐latitude biomes; some CES are increased more by NNTs in less‐wealthy countries or in countries with higher gross domestic products. The effects of NNTs on several ecosystem (dis)services exhibited some synergies (e.g. among soil fertility, soil formation and climate regulation or between aesthetic values and pollen allergenicity), but also trade‐offs (e.g. between fire regulation and soil erosion control). Our analyses provide a quantitative understanding of the complex synergies, trade‐offs and context dependencies involved for the effects of NNTs that is essential for attaining a sustained provision of ecosystem services.
Archivio istituziona... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2019Full-Text: http://hdl.handle.net/10449/67570Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/8bz1s7vfData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/250944Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedUniversidade de Lisboa: Repositório.ULArticle . 2019License: CC BY NC NDData sources: Universidade de Lisboa: Repositório.ULGöttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 196 citations 196 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 206visibility views 206 download downloads 180 Powered bymore_vert Archivio istituziona... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2019Full-Text: http://hdl.handle.net/10449/67570Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/8bz1s7vfData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/250944Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedUniversidade de Lisboa: Repositório.ULArticle . 2019License: CC BY NC NDData sources: Universidade de Lisboa: Repositório.ULGöttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Funded by:NSF | IMUA III: Pacific High Is..., NSF | Investing in Multidiscipl..., NSF | IMUA 2: NSF Hawaii EPSCoR +1 projectsNSF| IMUA III: Pacific High Island Evolutionary Biogeography: Impacts of Invasive Species, Anthropogenic Activity and Climate Change on Hawaiian Focal Species ,NSF| Investing in Multidisciplinary University Activities through Hawaii EPSCoR ,NSF| IMUA 2: NSF Hawaii EPSCoR ,NSF| CAREER: Significance of Foliar Nitrogen and Phosphorus Accumulation in Tropical ForestsAuthors: Nicole DiManno; Rebecca Ostertag;pmid: 26404491
Nitrogen (N) and phosphorus (P) are the most important nutrients involved in plant reproduction and typically the most limiting in terrestrial ecosystems. The natural soil fertility gradient of the Hawaiian archipelago, in which younger islands are N limited and older islands are P limited, provides a model system to examine questions regarding allocation of nutrients. Using fertilized plots (+N or +P) at the extreme sites of the Hawaiian archipelago, vegetative productivity (e.g., net primary productivity, growth, and litterfall) and foliar nutrient responses have previously been studied for the dominant canopy tree, Metrosideros polymorpha. Here, we investigated whether the reproductive response of M. polymorpha mirrors the previously found vegetative productivity and foliar nutrient responses, by quantifying: (1) inflorescence and seed productivity, and (2) nutrient concentration of reproductive structures. Fertilization with N and P did not significantly affect the productivity of inflorescences or seeds, or seed viability at either site. However, nutrient concentrations increased after fertilization; %P increased in inflorescences in the +P treatment at the P-limited site. Seeds and inflorescences generally contained higher nutrient concentrations than leaves at both sites. Unlike foliar data, reproductive strategies of M. polymorpha differed depending on soil nutrient limitation with emphasis on quality (higher seed viability/greater nutrient concentrations) at the P-limited site. We suggest that in response to P additions M. polymorpha employs a nutrient conservation strategy for its inflorescences and an investment strategy for its seeds. Examining N and P simultaneously challenges a basic assumption that reproductive allocation follows a similar pattern to the often measured aboveground productivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3449-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3449-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, France, United StatesPublisher:Wiley Authors: Camille Piponiot; Kristina J. Anderson‐Teixeira; Stuart J. Davies; David Allen; +56 AuthorsCamille Piponiot; Kristina J. Anderson‐Teixeira; Stuart J. Davies; David Allen; Norman A. Bourg; David F. R. P. Burslem; Dairon Cárdenas; Chia‐Hao Chang‐Yang; George Chuyong; Susan Cordell; Handanakere Shivaramaiah Dattaraja; Álvaro Duque; Sisira Ediriweera; Corneille Ewango; Zacky Ezedin; Jonah Filip; Christian P. Giardina; Robert Howe; Chang‐Fu Hsieh; Stephen P. Hubbell; Faith M. Inman‐Narahari; Akira Itoh; David Janík; David Kenfack; Kamil Král; James A. Lutz; Jean‐Remy Makana; Sean M. McMahon; William McShea; Xiangcheng Mi; Mohizah Bt. Mohamad; Vojtěch Novotný; Michael J. O'Brien; Rebecca Ostertag; Geoffrey Parker; Rolando Pérez; Haibao Ren; Glen Reynolds; Mohamad Danial Md Sabri; Lawren Sack; Ankur Shringi; Sheng‐Hsin Su; Raman Sukumar; I‐Fang Sun; Hebbalalu S. Suresh; Duncan W. Thomas; Jill Thompson; Maria Uriarte; John Vandermeer; Yunquan Wang; Ian M. Ware; George D. Weiblen; Timothy J. S. Whitfeld; Amy Wolf; Tze Leong Yao; Mingjian Yu; Zuoqiang Yuan; Jess K. Zimmerman; Daniel Zuleta; Helene C. Muller‐Landau;Summary Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among‐site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large‐scale (4–52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size‐related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1–10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate‐driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.
New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu