- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:EDP Sciences Authors: Karim Msatef; Lahcen Benaabidate; Aziz Bouignane;This work consists in studying the hydrological and hydroclimatic regime of the Ouergha watershed and frequency analysis of extreme flows and extreme rainfall for peak estimation and return periods, in order to prevention and forecasting against risks (flood...). Hydrological regime analysis showed a regime of the rain type, characterized by rainfed abundance with very high winter flows, so strong floods. The annual module and the different coefficients show hydroclimatic fluctuations in relation to a semihumid climate. The water balance has highlighted the importance of the volumes of water conveyed upstream than downstream, thus confirming the morphometric parameters of watershed and the lithological nature. Frequency study of flows and extreme rainfall showed that these flows governed by dissymmetrical laws based on methods Gumbel, GEV, Gamma and Log Pearson III.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20183704001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20183704001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 FrancePublisher:MDPI AG Authors: Brouziyne, Youssef; Abouabdillah, Aziz; Chehbouni, Abdelghani; Hanich, Lahoucine; +3 AuthorsBrouziyne, Youssef; Abouabdillah, Aziz; Chehbouni, Abdelghani; Hanich, Lahoucine; Bergaoui, Karim; Mcdonnell, Rachael; Benaabidate, Lahcen;doi: 10.3390/w12092333
handle: 10568/109073
Understanding the spatiotemporal distribution of future droughts is essential for effective water resource management, especially in the Mediterranean region where water resources are expected to be scarcer in the future. In this study, we combined meteorological and hydrological drought indices with the Soil and Water Assessment Tool (SWAT) model to predict future dry years during two periods (2035–2050and 2085–2100) in a typical Mediterranean watershed in Northern Morocco, namely, Bouregreg watershed. The developed methodology was then used to evaluate drought impact on annual water yields and to identify the most vulnerable sub-basins within the study watershed. Two emission scenarios (RCP4.5 and RCP8.5) of a downscaled global circulation model were used to force the calibrated SWAT model. Results indicated that Bouregreg watershed will experience several dry years with higher frequency especially at the end of current century. Significant decreases of annual water yields were simulated during dry years, ranging from −45.6% to −76.7% under RCP4.5, and from −66.7% to −95.6% under RCP8.5, compared to baseline. Overall, hydrologic systems in sub-basins under the ocean or high-altitude influence appear to be more resilient to drought. The combination of drought indices and the semi-distributed model offer a comprehensive tool to understand potential future droughts in Bouregreg watershed.
Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/9/2333/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/109073Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12092333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/9/2333/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/109073Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12092333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2021 ItalyPublisher:Copernicus GmbH Authors: Anna Maria De Girolamo; Youssef Brouziyne; Lahcen Benaabidate; Aziz Aboubdillah; +3 AuthorsAnna Maria De Girolamo; Youssef Brouziyne; Lahcen Benaabidate; Aziz Aboubdillah; Ali El Bilali; Lhoussaine Bouchaou; Abdelghani Chehbouni;handle: 20.500.14243/431647
<p>The non-perennial streams and rivers are predominant in the Mediterranean region and play an important ecological role in the ecosystem diversity in this region. This class of streams is particularly vulnerable to climate change effects that are expected to amplify further under most climatic projections. Understanding the potential response of the hydrologic regime attributes to climatic stress helps in planning better conservation and management strategies. Bouregreg watershed (BW) in Morocco, is a strategic watershed for the region with a developed non-perennial stream network, and with typical assets and challenges of most Mediterranean watersheds. In this study, a hybrid modeling approach, based on the Soil and Water Assessment Tool (SWAT) model and Indicator of Hydrologic Alteration (IHA) program, was used to simulate the response of BW's stream network to climate change during the period: 2035-2050. Downscaled daily climate data from the global circulation model CNRM-CM5 were used to force the hybrid modeling framework over the study area. Results showed that, under the changing climate, the magnitude of the alteration will be different across the stream network; however, almost the entire flow regime attributes will be affected. Under the RCP8.5 scenario, the average number of zero-flow days will rise up from 3 to 17.5 days per year in some streams, the timing of the maximum flow was calculated to occur earlier by 17 days than in baseline, and the timing of the minimal flow should occur later by 170 days in some streams. The used modeling approach in this study contributed in identifying the most vulnerable streams in the BW to climate change for potential prioritization in conservation plans.</p>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu21-9414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu21-9414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 FrancePublisher:EDP Sciences Youssef Brouziyne; Abdelghani Chehbouni; Aziz Abouabdillah; Jamal Hallam; Fouad Moudden; Ali El Bilali; Lahcen Benaabidate;Rainfed agriculture is becoming increasingly vulnerable to climate change. This situation is expected to worsen under most future climate projections, which might increase the risks linked to food security and economies which depend on it. Providing insights about the potential responses of rainfed crops to climate change will helps on designing future adaptation strategies. In this study, large amount of data and the agro-hydrological model SWAT have been used to investigate future climate change impacts on rainfed wheat and sunflower crops in a semiarid watershed in Morocco (R’dom watershed). Downscaled CORDEX climate projections were used in generating future plants growth simulation for R’dom watershed in the 2031 to 2050 horizon under two Representative Concentration Pathways (RCPs): 4.5 and 8.5. The main results of climate change scenarios highlighted that R’dom watershed will undergo significant decrease in water resources availability with more impact under the scenario RCP 8.5. Water productivities of both studied crops could be lower by up to -21% in comparison with baseline situation. Different sustainable management strategies have been simulated using SWAT model under climate change context. The adopted approach succeeded in building up sustainable management strategies toward secured food security in the future.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03614741Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202018303002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03614741Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202018303002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Soumaya Nabih; Ourania Tzoraki; Prodromos Zanis; Thanos Tsikerdekis; Dimitris Akritidis; Ioannis Kontogeorgos; Lahcen Benaabidate;Climate change projections predict the increase of no-rain periods and storm intensity resulting in high hydrologic alteration of the Mediterranean rivers. Intermittent flow Rivers and Ephemeral Streams (IRES) are particularly vulnerable to spatiotemporal variation of climate variables, land use changes and other anthropogenic factors. In this work, the impact of climate change on the aquatic state of IRES is assessed by the combination of the hydrological model Soil and Water Assessment Tool (SWAT) and the Temporary Rivers Ecological and Hydrological Status (TREHS) tool under two different Representative Concentration Pathways (RCP 4.5 and RCP 8.5) using CORDEX model simulations. A significant decrease of 20–40% of the annual flow of the examined river (Tsiknias River, Greece) is predicted during the next 100 years with an increase in the frequency of extreme flood events as captured with almost all Regional Climate Models (RCMs) simulations. The occurrence patterns of hyporheic and edaphic aquatic states show a temporal extension of these states through the whole year due to the elongation of the dry period. A shift to the Intermittent-Pools regime type shows dominance according to numerous climate change scenarios, harming, as a consequence, both the ecological system and the social-economic one.
Hydrology arrow_drop_down HydrologyOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2306-5338/8/1/43/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/hydrology8010043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hydrology arrow_drop_down HydrologyOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2306-5338/8/1/43/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/hydrology8010043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:EDP Sciences Authors: Karim Msatef; Lahcen Benaabidate; Aziz Bouignane;This work consists in studying the hydrological and hydroclimatic regime of the Ouergha watershed and frequency analysis of extreme flows and extreme rainfall for peak estimation and return periods, in order to prevention and forecasting against risks (flood...). Hydrological regime analysis showed a regime of the rain type, characterized by rainfed abundance with very high winter flows, so strong floods. The annual module and the different coefficients show hydroclimatic fluctuations in relation to a semihumid climate. The water balance has highlighted the importance of the volumes of water conveyed upstream than downstream, thus confirming the morphometric parameters of watershed and the lithological nature. Frequency study of flows and extreme rainfall showed that these flows governed by dissymmetrical laws based on methods Gumbel, GEV, Gamma and Log Pearson III.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20183704001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20183704001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 FrancePublisher:MDPI AG Authors: Brouziyne, Youssef; Abouabdillah, Aziz; Chehbouni, Abdelghani; Hanich, Lahoucine; +3 AuthorsBrouziyne, Youssef; Abouabdillah, Aziz; Chehbouni, Abdelghani; Hanich, Lahoucine; Bergaoui, Karim; Mcdonnell, Rachael; Benaabidate, Lahcen;doi: 10.3390/w12092333
handle: 10568/109073
Understanding the spatiotemporal distribution of future droughts is essential for effective water resource management, especially in the Mediterranean region where water resources are expected to be scarcer in the future. In this study, we combined meteorological and hydrological drought indices with the Soil and Water Assessment Tool (SWAT) model to predict future dry years during two periods (2035–2050and 2085–2100) in a typical Mediterranean watershed in Northern Morocco, namely, Bouregreg watershed. The developed methodology was then used to evaluate drought impact on annual water yields and to identify the most vulnerable sub-basins within the study watershed. Two emission scenarios (RCP4.5 and RCP8.5) of a downscaled global circulation model were used to force the calibrated SWAT model. Results indicated that Bouregreg watershed will experience several dry years with higher frequency especially at the end of current century. Significant decreases of annual water yields were simulated during dry years, ranging from −45.6% to −76.7% under RCP4.5, and from −66.7% to −95.6% under RCP8.5, compared to baseline. Overall, hydrologic systems in sub-basins under the ocean or high-altitude influence appear to be more resilient to drought. The combination of drought indices and the semi-distributed model offer a comprehensive tool to understand potential future droughts in Bouregreg watershed.
Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/9/2333/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/109073Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12092333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/9/2333/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/109073Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12092333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2021 ItalyPublisher:Copernicus GmbH Authors: Anna Maria De Girolamo; Youssef Brouziyne; Lahcen Benaabidate; Aziz Aboubdillah; +3 AuthorsAnna Maria De Girolamo; Youssef Brouziyne; Lahcen Benaabidate; Aziz Aboubdillah; Ali El Bilali; Lhoussaine Bouchaou; Abdelghani Chehbouni;handle: 20.500.14243/431647
<p>The non-perennial streams and rivers are predominant in the Mediterranean region and play an important ecological role in the ecosystem diversity in this region. This class of streams is particularly vulnerable to climate change effects that are expected to amplify further under most climatic projections. Understanding the potential response of the hydrologic regime attributes to climatic stress helps in planning better conservation and management strategies. Bouregreg watershed (BW) in Morocco, is a strategic watershed for the region with a developed non-perennial stream network, and with typical assets and challenges of most Mediterranean watersheds. In this study, a hybrid modeling approach, based on the Soil and Water Assessment Tool (SWAT) model and Indicator of Hydrologic Alteration (IHA) program, was used to simulate the response of BW's stream network to climate change during the period: 2035-2050. Downscaled daily climate data from the global circulation model CNRM-CM5 were used to force the hybrid modeling framework over the study area. Results showed that, under the changing climate, the magnitude of the alteration will be different across the stream network; however, almost the entire flow regime attributes will be affected. Under the RCP8.5 scenario, the average number of zero-flow days will rise up from 3 to 17.5 days per year in some streams, the timing of the maximum flow was calculated to occur earlier by 17 days than in baseline, and the timing of the minimal flow should occur later by 170 days in some streams. The used modeling approach in this study contributed in identifying the most vulnerable streams in the BW to climate change for potential prioritization in conservation plans.</p>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu21-9414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu21-9414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 FrancePublisher:EDP Sciences Youssef Brouziyne; Abdelghani Chehbouni; Aziz Abouabdillah; Jamal Hallam; Fouad Moudden; Ali El Bilali; Lahcen Benaabidate;Rainfed agriculture is becoming increasingly vulnerable to climate change. This situation is expected to worsen under most future climate projections, which might increase the risks linked to food security and economies which depend on it. Providing insights about the potential responses of rainfed crops to climate change will helps on designing future adaptation strategies. In this study, large amount of data and the agro-hydrological model SWAT have been used to investigate future climate change impacts on rainfed wheat and sunflower crops in a semiarid watershed in Morocco (R’dom watershed). Downscaled CORDEX climate projections were used in generating future plants growth simulation for R’dom watershed in the 2031 to 2050 horizon under two Representative Concentration Pathways (RCPs): 4.5 and 8.5. The main results of climate change scenarios highlighted that R’dom watershed will undergo significant decrease in water resources availability with more impact under the scenario RCP 8.5. Water productivities of both studied crops could be lower by up to -21% in comparison with baseline situation. Different sustainable management strategies have been simulated using SWAT model under climate change context. The adopted approach succeeded in building up sustainable management strategies toward secured food security in the future.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03614741Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202018303002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03614741Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202018303002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Soumaya Nabih; Ourania Tzoraki; Prodromos Zanis; Thanos Tsikerdekis; Dimitris Akritidis; Ioannis Kontogeorgos; Lahcen Benaabidate;Climate change projections predict the increase of no-rain periods and storm intensity resulting in high hydrologic alteration of the Mediterranean rivers. Intermittent flow Rivers and Ephemeral Streams (IRES) are particularly vulnerable to spatiotemporal variation of climate variables, land use changes and other anthropogenic factors. In this work, the impact of climate change on the aquatic state of IRES is assessed by the combination of the hydrological model Soil and Water Assessment Tool (SWAT) and the Temporary Rivers Ecological and Hydrological Status (TREHS) tool under two different Representative Concentration Pathways (RCP 4.5 and RCP 8.5) using CORDEX model simulations. A significant decrease of 20–40% of the annual flow of the examined river (Tsiknias River, Greece) is predicted during the next 100 years with an increase in the frequency of extreme flood events as captured with almost all Regional Climate Models (RCMs) simulations. The occurrence patterns of hyporheic and edaphic aquatic states show a temporal extension of these states through the whole year due to the elongation of the dry period. A shift to the Intermittent-Pools regime type shows dominance according to numerous climate change scenarios, harming, as a consequence, both the ecological system and the social-economic one.
Hydrology arrow_drop_down HydrologyOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2306-5338/8/1/43/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/hydrology8010043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hydrology arrow_drop_down HydrologyOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2306-5338/8/1/43/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/hydrology8010043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu