- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:American Chemical Society (ACS) Funded by:SNSF | NCCR Catalysis (phase I)SNSF| NCCR Catalysis (phase I)Authors: Yuzhen Ge; Tangsheng Zou; Antonio J. Martín; Javier Pérez-Ramírez;The development of efficient catalysts for the direct synthesis of higher alcohols (HA) via CO hydrogenation has remained a prominent research challenge. While modified Fischer-Tropsch synthesis (m-FTS) systems hold great potential, they often retain limited active site density under operating conditions for industrially relevant performance. Aimed at improving existing catalyst architectures, this study investigates the impact of highly dispersed metal oxides of Co-Cu, Cu-Fe, and Co-Fe m-FTS systems and demonstrates the viability of ZrO2 as a general promoter in the direct synthesis of HA from syngas. A volcano-like composition-performance relationship, in which 5-10 mol % ZrO2 resulted in maximal HA productivity, governs all catalyst families. The promotional effect resulted in a 2.5-fold increase in HA productivity for the optimized Cu1Co4@ZrO2-5 catalyst (Cu:Co = 1:4, 5 mol % ZrO2) compared to its ZrO2-free counterpart and placed Co1Fe4@ZrO2-10 among the most productive systems (345 mgHA h-1 gcat-1) reported in this category under comparable operating conditions, with stable performance for at least 300 h. ZrO2 assumes an amorphous and defective nature on the catalysts, leading to enhanced H2 and CO activation, facilitated formation of metallic and carbide phases, and structural stabilization.
ACS Catalysis arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acscatal.3c02534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert ACS Catalysis arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acscatal.3c02534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 01 Jan 2023 Switzerland, SwitzerlandPublisher:Royal Society of Chemistry (RSC) Authors: Iasonas Ioannou; Ángel Galán-Martín; Javier Pérez-Ramírez; Gonzalo Guillén-Gosálbez;We analyse the future transition towards a carbon-neutral chemical sector. Our study unfolds new avenues to include SDG-based metrics in science and engineering while quantifying the potential collateral damage of CCU on sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee01153k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee01153k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Funded by:EC | SUNFUELSEC| SUNFUELSUri Ash-Kurlander; Oliver Martin; Luca D. Fontana; Vikas R. Patil; Men Bernegger; Cecilia Mondelli; Javier Pérez-Ramírez; Aldo Steinfeld;AbstractMethanol production with the use of syngas derived from solar‐driven splitting of CO2 and H2O is a promising route to sustainable liquid fuels. Herein, we investigated the effect of using a CO2‐rich syngas with the same composition as that obtained in a solar thermochemical reactor and of applying a daily startup–shutdown (DSS) routine matching the intermittent solar operation over a benchmark Cu–ZnO–Al2O3 catalyst. The catalyst reached fast equilibration (10 h) in the presence of this syngas mixture and reversibly responded to changes in the concentrations of CO and CO2 by mimicking fluctuations in the feed composition. Remarkably, its deactivation was even less pronounced over 27 cycles under a DSS regime than for a corresponding time on stream under uninterrupted operation if the reactor was purged with H2‐free syngas upon shutdown. Characterization and modeling indicated that this purging avoided the formation of inactive ZnCO3 and minimized the oxidation of the Cu surface atoms.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/https://doi....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/https://doi....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Margje Alberts; Jorge Gascon; Javier Pérez-Ramírez; Tobias C. Keller; Freek Kapteijn; Mark J. Meijerink; Sina Sartipi;pmid: 23765635
Wax on, wax off: Bifunctional cobalt-based catalysts on zeolite supports are applied for the valorization of biosyngas through Fischer-Tropsch chemistry. By using these catalysts, waxes can be hydrocracked to shorter-chain hydrocarbons, increasing the selectivity towards the C5 -C11 (gasoline) fraction. The zeolite topology and the amount and strength of acid sites are key parameters to maximize the performance of these bifunctional catalysts, steering Fischer-Tropsch product selectivity towards liquid hydrocarbons.
ChemSusChem arrow_drop_down ChemSusChemArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201300339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down ChemSusChemArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201300339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 21 Apr 2023 Switzerland, Switzerland, DenmarkPublisher:Royal Society of Chemistry (RSC) Authors: Margarita A. Charalambous; Victor Tulus; Morten W. Ryberg; Javier Pérez-Ramírez; +1 AuthorsMargarita A. Charalambous; Victor Tulus; Morten W. Ryberg; Javier Pérez-Ramírez; Gonzalo Guillén-Gosálbez;We quantify the absolute environmental sustainability of DME-fuelled heavy-duty (HD) trucks, and compare it against the current diesel counterpart, finding that renewable DME can promote an absolute environmentally sustainable HD truck sector.
Sustainable Energy &... arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2se01409b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2se01409b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Faust Akl, Dario; Poier, Dario; Mitchell, Sharon; D'Angelo, Sebastiano; Araújo, Thaylan; Safonova, Olga; Marti, Roger; Guillén-Gosálbez, Gonzalo; Pérez-Ramírez, Javier; Tulus, Viktor;Dataset supporting the article "Assessing the environmental benefit of palladium-based single-atom heterogeneous catalysts for Sonogashira coupling" by D. Faust Akl, D. Poier, S. C. D’Angelo, T. P. Araújo, V. Tulus, O. V. Safonova, S. Mitchell, R. Marti, G. Guillén-Gosálbez, and J. Pérez-Ramírez.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6135989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6135989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 26 Jul 2021 Spain, Switzerland, SpainPublisher:American Chemical Society (ACS) Sebastiano Carlo D’Angelo; Selene Cobo; Victor Tulus; Abhinandan Nabera; Antonio José Martín; Javier Pérez-Ramírez; Gonzalo Guillén-Gosálbez;handle: 10902/33795
At present, the synthesis of ammonia through the Haber-Bosch (HB) process accounts for 1.2% of the global carbon emissions, representing roughly one-fourth of the global fossil consumption from the chemical industry, which creates a pressing need for alternative low-carbon synthesis routes. Analyzing seven essential planetary boundaries (PBs) for the safe operation of our planet, we find that the standard HB process is unsustainable as it vastly transgresses the climate change PB. In order to identify more responsible strategies from this integrated perspective, we assess the absolute sustainability level of 34 alternative routes where hydrogen (H-2) is supplied by steam methane reforming with carbon capture and storage, biomass gasification, or water electrolysis powered by various energy sources. We found that some of these scenarios could substantially reduce the global impact of fossil HB, yet alleviating the impact on climate change could critically exacerbate the impacts on other Earth-system processes. Furthermore, we identify that reducing the cost of electrolytic H-2 is the main avenue toward the economic appeal of the most sustainable routes. Our work highlights the need to embrace global impacts beyond climate change in the assessment of decarbonization routes of fossil chemicals. This approach enabled us to identify more suitable alternatives and associated challenges toward environmental and economically attractive ammonia synthesis. ACS Sustainable Chemistry & Engineering, 9 (29) ISSN:2168-0485
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.1c01915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 61 citations 61 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 196visibility views 196 download downloads 25 Powered bymore_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.1c01915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Jan 2023 Switzerland, Germany, Italy, GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:MIUR, EC | A-LEAF, EC | DECADEMIUR ,EC| A-LEAF ,EC| DECADEClaudio Ampelli; Daniele Giusi; Matteo Miceli; Tsvetelina Merdzhanova; Vladimir Smirnov; Ugochi Chime; Oleksandr Astakhov; Antonio José Martín; Florentine Louise Petronella Veenstra; Felipe Andrés Garcés Pineda; Jesús González-Cobos; Miguel García-Tecedor; Sixto Giménez; Wolfram Jaegermann; Gabriele Centi; Javier Pérez-Ramírez; José Ramón Galán-Mascarós; Siglinda Perathoner;handle: 11570/3255636
A major challenge for achieving the energy transition and transforming the current energy model into distributed production is the development of efficient artificial leaf devices made of earth-abundant materials for sustainable fuel production.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2023License: CC BY NCEnergy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1039/d2ee...Article . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee03215e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2023License: CC BY NCEnergy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1039/d2ee...Article . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee03215e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Jan 2018 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:EC | A-LEAFEC| A-LEAFAuthors: Gastón O. Larrazábal; Tatsuya Shinagawa; Antonio J. Martín; Javier Pérez-Ramírez;AbstractThe emergence of synergistic effects in multicomponent catalysts can result in breakthrough advances in the electrochemical reduction of carbon dioxide. Copper-indium catalysts show high performance toward carbon monoxide production but also extensive structural and compositional changes under operation. The origin of the synergistic effect and the nature of the active phase are not well understood, thus hindering optimization efforts. Here we develop a platform that sheds light into these aspects, based on microfabricated model electrodes that are evaluated under conventional experimental conditions. The relationship among the electrode performance, geometry and composition associates the high carbon monoxide evolution activity of copper-indium catalysts to indium-poor bimetallic phases, which are formed upon exposure to reaction conditions in the vicinity of the interfaces between copper oxide and an indium source. The exploratory extension of this approach to the copper-tin system demonstrates its versatility and potential for the study of complex multicomponent electrocatalysts.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-03980-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 7 Powered bymore_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-03980-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 01 Dec 2019 SwitzerlandPublisher:Royal Society of Chemistry (RSC) Andrés González-Garay; Matthias S. Frei; Amjad Al-Qahtani; Cecilia Mondelli; Gonzalo Guillén-Gosálbez; Javier Pérez-Ramírez;The unprecedented application of planetary boundaries in chemical process assessment uncovers the otherwise unidentifiable potential of green methanol in establishing a sustainable industry.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee01673b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu184 citations 184 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee01673b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:American Chemical Society (ACS) Funded by:SNSF | NCCR Catalysis (phase I)SNSF| NCCR Catalysis (phase I)Authors: Yuzhen Ge; Tangsheng Zou; Antonio J. Martín; Javier Pérez-Ramírez;The development of efficient catalysts for the direct synthesis of higher alcohols (HA) via CO hydrogenation has remained a prominent research challenge. While modified Fischer-Tropsch synthesis (m-FTS) systems hold great potential, they often retain limited active site density under operating conditions for industrially relevant performance. Aimed at improving existing catalyst architectures, this study investigates the impact of highly dispersed metal oxides of Co-Cu, Cu-Fe, and Co-Fe m-FTS systems and demonstrates the viability of ZrO2 as a general promoter in the direct synthesis of HA from syngas. A volcano-like composition-performance relationship, in which 5-10 mol % ZrO2 resulted in maximal HA productivity, governs all catalyst families. The promotional effect resulted in a 2.5-fold increase in HA productivity for the optimized Cu1Co4@ZrO2-5 catalyst (Cu:Co = 1:4, 5 mol % ZrO2) compared to its ZrO2-free counterpart and placed Co1Fe4@ZrO2-10 among the most productive systems (345 mgHA h-1 gcat-1) reported in this category under comparable operating conditions, with stable performance for at least 300 h. ZrO2 assumes an amorphous and defective nature on the catalysts, leading to enhanced H2 and CO activation, facilitated formation of metallic and carbide phases, and structural stabilization.
ACS Catalysis arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acscatal.3c02534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert ACS Catalysis arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acscatal.3c02534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 01 Jan 2023 Switzerland, SwitzerlandPublisher:Royal Society of Chemistry (RSC) Authors: Iasonas Ioannou; Ángel Galán-Martín; Javier Pérez-Ramírez; Gonzalo Guillén-Gosálbez;We analyse the future transition towards a carbon-neutral chemical sector. Our study unfolds new avenues to include SDG-based metrics in science and engineering while quantifying the potential collateral damage of CCU on sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee01153k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee01153k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Funded by:EC | SUNFUELSEC| SUNFUELSUri Ash-Kurlander; Oliver Martin; Luca D. Fontana; Vikas R. Patil; Men Bernegger; Cecilia Mondelli; Javier Pérez-Ramírez; Aldo Steinfeld;AbstractMethanol production with the use of syngas derived from solar‐driven splitting of CO2 and H2O is a promising route to sustainable liquid fuels. Herein, we investigated the effect of using a CO2‐rich syngas with the same composition as that obtained in a solar thermochemical reactor and of applying a daily startup–shutdown (DSS) routine matching the intermittent solar operation over a benchmark Cu–ZnO–Al2O3 catalyst. The catalyst reached fast equilibration (10 h) in the presence of this syngas mixture and reversibly responded to changes in the concentrations of CO and CO2 by mimicking fluctuations in the feed composition. Remarkably, its deactivation was even less pronounced over 27 cycles under a DSS regime than for a corresponding time on stream under uninterrupted operation if the reactor was purged with H2‐free syngas upon shutdown. Characterization and modeling indicated that this purging avoided the formation of inactive ZnCO3 and minimized the oxidation of the Cu surface atoms.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/https://doi....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/https://doi....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Margje Alberts; Jorge Gascon; Javier Pérez-Ramírez; Tobias C. Keller; Freek Kapteijn; Mark J. Meijerink; Sina Sartipi;pmid: 23765635
Wax on, wax off: Bifunctional cobalt-based catalysts on zeolite supports are applied for the valorization of biosyngas through Fischer-Tropsch chemistry. By using these catalysts, waxes can be hydrocracked to shorter-chain hydrocarbons, increasing the selectivity towards the C5 -C11 (gasoline) fraction. The zeolite topology and the amount and strength of acid sites are key parameters to maximize the performance of these bifunctional catalysts, steering Fischer-Tropsch product selectivity towards liquid hydrocarbons.
ChemSusChem arrow_drop_down ChemSusChemArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201300339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down ChemSusChemArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201300339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 21 Apr 2023 Switzerland, Switzerland, DenmarkPublisher:Royal Society of Chemistry (RSC) Authors: Margarita A. Charalambous; Victor Tulus; Morten W. Ryberg; Javier Pérez-Ramírez; +1 AuthorsMargarita A. Charalambous; Victor Tulus; Morten W. Ryberg; Javier Pérez-Ramírez; Gonzalo Guillén-Gosálbez;We quantify the absolute environmental sustainability of DME-fuelled heavy-duty (HD) trucks, and compare it against the current diesel counterpart, finding that renewable DME can promote an absolute environmentally sustainable HD truck sector.
Sustainable Energy &... arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2se01409b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2se01409b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Faust Akl, Dario; Poier, Dario; Mitchell, Sharon; D'Angelo, Sebastiano; Araújo, Thaylan; Safonova, Olga; Marti, Roger; Guillén-Gosálbez, Gonzalo; Pérez-Ramírez, Javier; Tulus, Viktor;Dataset supporting the article "Assessing the environmental benefit of palladium-based single-atom heterogeneous catalysts for Sonogashira coupling" by D. Faust Akl, D. Poier, S. C. D’Angelo, T. P. Araújo, V. Tulus, O. V. Safonova, S. Mitchell, R. Marti, G. Guillén-Gosálbez, and J. Pérez-Ramírez.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6135989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6135989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 26 Jul 2021 Spain, Switzerland, SpainPublisher:American Chemical Society (ACS) Sebastiano Carlo D’Angelo; Selene Cobo; Victor Tulus; Abhinandan Nabera; Antonio José Martín; Javier Pérez-Ramírez; Gonzalo Guillén-Gosálbez;handle: 10902/33795
At present, the synthesis of ammonia through the Haber-Bosch (HB) process accounts for 1.2% of the global carbon emissions, representing roughly one-fourth of the global fossil consumption from the chemical industry, which creates a pressing need for alternative low-carbon synthesis routes. Analyzing seven essential planetary boundaries (PBs) for the safe operation of our planet, we find that the standard HB process is unsustainable as it vastly transgresses the climate change PB. In order to identify more responsible strategies from this integrated perspective, we assess the absolute sustainability level of 34 alternative routes where hydrogen (H-2) is supplied by steam methane reforming with carbon capture and storage, biomass gasification, or water electrolysis powered by various energy sources. We found that some of these scenarios could substantially reduce the global impact of fossil HB, yet alleviating the impact on climate change could critically exacerbate the impacts on other Earth-system processes. Furthermore, we identify that reducing the cost of electrolytic H-2 is the main avenue toward the economic appeal of the most sustainable routes. Our work highlights the need to embrace global impacts beyond climate change in the assessment of decarbonization routes of fossil chemicals. This approach enabled us to identify more suitable alternatives and associated challenges toward environmental and economically attractive ammonia synthesis. ACS Sustainable Chemistry & Engineering, 9 (29) ISSN:2168-0485
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.1c01915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 61 citations 61 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 196visibility views 196 download downloads 25 Powered bymore_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.1c01915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Jan 2023 Switzerland, Germany, Italy, GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:MIUR, EC | A-LEAF, EC | DECADEMIUR ,EC| A-LEAF ,EC| DECADEClaudio Ampelli; Daniele Giusi; Matteo Miceli; Tsvetelina Merdzhanova; Vladimir Smirnov; Ugochi Chime; Oleksandr Astakhov; Antonio José Martín; Florentine Louise Petronella Veenstra; Felipe Andrés Garcés Pineda; Jesús González-Cobos; Miguel García-Tecedor; Sixto Giménez; Wolfram Jaegermann; Gabriele Centi; Javier Pérez-Ramírez; José Ramón Galán-Mascarós; Siglinda Perathoner;handle: 11570/3255636
A major challenge for achieving the energy transition and transforming the current energy model into distributed production is the development of efficient artificial leaf devices made of earth-abundant materials for sustainable fuel production.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2023License: CC BY NCEnergy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1039/d2ee...Article . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee03215e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2023License: CC BY NCEnergy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1039/d2ee...Article . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee03215e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Jan 2018 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:EC | A-LEAFEC| A-LEAFAuthors: Gastón O. Larrazábal; Tatsuya Shinagawa; Antonio J. Martín; Javier Pérez-Ramírez;AbstractThe emergence of synergistic effects in multicomponent catalysts can result in breakthrough advances in the electrochemical reduction of carbon dioxide. Copper-indium catalysts show high performance toward carbon monoxide production but also extensive structural and compositional changes under operation. The origin of the synergistic effect and the nature of the active phase are not well understood, thus hindering optimization efforts. Here we develop a platform that sheds light into these aspects, based on microfabricated model electrodes that are evaluated under conventional experimental conditions. The relationship among the electrode performance, geometry and composition associates the high carbon monoxide evolution activity of copper-indium catalysts to indium-poor bimetallic phases, which are formed upon exposure to reaction conditions in the vicinity of the interfaces between copper oxide and an indium source. The exploratory extension of this approach to the copper-tin system demonstrates its versatility and potential for the study of complex multicomponent electrocatalysts.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-03980-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 7 Powered bymore_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-03980-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 01 Dec 2019 SwitzerlandPublisher:Royal Society of Chemistry (RSC) Andrés González-Garay; Matthias S. Frei; Amjad Al-Qahtani; Cecilia Mondelli; Gonzalo Guillén-Gosálbez; Javier Pérez-Ramírez;The unprecedented application of planetary boundaries in chemical process assessment uncovers the otherwise unidentifiable potential of green methanol in establishing a sustainable industry.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee01673b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu184 citations 184 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee01673b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu