- home
- Advanced Search
- Energy Research
- 2016-2025
- Energy Research
- 2016-2025
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors:Leanda C. Garvie;
Leanda C. Garvie
Leanda C. Garvie in OpenAIREDavid J. Lee;
David J. Lee
David J. Lee in OpenAIREBiljana Kulišić;
Biljana Kulišić
Biljana Kulišić in OpenAIREdoi: 10.3390/en17020397
Australia has abundant volumes of forest residues that are a potential feedstock for supplying biomass as a renewable carbon carrier to the market. However, there remains an underutilization of this resource, even in mature bioeconomy markets. Several existing or perceived barriers can be attributed to the underdeveloped, forest-based bioeconomy in Australia. One of these is the limited understanding of feedstock supply costs. In this study, two ranking approaches were applied to identify the optimal biomass feedstock supply chain from field to conversion plant gate. A panel of experts embedded in the Australian bioeconomy were employed to first assign ranks to biomass supply chain items by cost intensity. Then, a layer of analytic hierarchical process (AHP) was used to weigh and rank various biomass supply pathways by efficiency. The results reveal that biomass extraction ranks the highest and biomass feedstock storage ranks the lowest, relative to other supply chain costs. Extracting and chipping material in the field attracted the most support from the experts in terms of efficiency, followed by transporting and chipping at the roadside and, finally, transporting and chipping at the conversion plant. This study provides insights for designers of the forest-based bioeconomy in Australia into relative cost drivers that may be applied to investment and industry decisions. It also provides a framework to support further investigations into forest biomass development and the management of biomass as a renewable carbon carrier at a time when Australia is transitioning from an energy policy focused on fossil fuels to a renewable energy strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors:Leanda C. Garvie;
Leanda C. Garvie
Leanda C. Garvie in OpenAIREDavid J. Lee;
David J. Lee
David J. Lee in OpenAIREBiljana Kulišić;
Biljana Kulišić
Biljana Kulišić in OpenAIREdoi: 10.3390/en17020397
Australia has abundant volumes of forest residues that are a potential feedstock for supplying biomass as a renewable carbon carrier to the market. However, there remains an underutilization of this resource, even in mature bioeconomy markets. Several existing or perceived barriers can be attributed to the underdeveloped, forest-based bioeconomy in Australia. One of these is the limited understanding of feedstock supply costs. In this study, two ranking approaches were applied to identify the optimal biomass feedstock supply chain from field to conversion plant gate. A panel of experts embedded in the Australian bioeconomy were employed to first assign ranks to biomass supply chain items by cost intensity. Then, a layer of analytic hierarchical process (AHP) was used to weigh and rank various biomass supply pathways by efficiency. The results reveal that biomass extraction ranks the highest and biomass feedstock storage ranks the lowest, relative to other supply chain costs. Extracting and chipping material in the field attracted the most support from the experts in terms of efficiency, followed by transporting and chipping at the roadside and, finally, transporting and chipping at the conversion plant. This study provides insights for designers of the forest-based bioeconomy in Australia into relative cost drivers that may be applied to investment and industry decisions. It also provides a framework to support further investigations into forest biomass development and the management of biomass as a renewable carbon carrier at a time when Australia is transitioning from an energy policy focused on fossil fuels to a renewable energy strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Australia, United StatesPublisher:Elsevier BV Authors:Robert J Henry;
Jason S. Lupoi; Robert W. Sykes; Robert W. Sykes; +13 AuthorsRobert J Henry
Robert J Henry in OpenAIRERobert J Henry;
Jason S. Lupoi; Robert W. Sykes; Robert W. Sykes; Joel M. Guenther; Joel M. Guenther;Robert J Henry
Robert J Henry in OpenAIREDavid J. Lee;
David J. Lee
David J. Lee in OpenAIREBlake A. Simmons;
Blake A. Simmons; Blake A. Simmons;Blake A. Simmons
Blake A. Simmons in OpenAIREStephen R. Decker;
Stephen R. Decker; Adam Healey; Seema Singh; Seema Singh; Kim Tran; Kim Tran;Stephen R. Decker
Stephen R. Decker in OpenAIRECorymbia (a eucalypt) is an important forestry genus and a potential lignocellulosic bioenergy feedstock. The composition of the lignocellulosic cell wall significantly impacts pretreatment efficiency and conversion to biofuel but is variable and changes with age. In this study, we estimated Klason lignin content, composition, and monosaccharide (glucose and xylose) release after enzymatic saccharification of untreated and hydrothermally pretreated biomass from Corymbia parental species Corymbia torelliana (CT), Corymbia citriodora subsp. variegata (spotted gum; CCV), and interspecific F1 hybrids (CT × CCV) at ages 9 and 12 years from planting. Analysis of lignin composition derived from syringyl/guaiacyl monolignols (S/G) found significant differences among taxa, with CT S/G ratios (2.2 and 2.0) being significantly lower than CCV (2.6 and 2.3) or hybrids (2.5 and 2.3) at ages 9 and 12 respectively. In general, enzymatic saccharification yields from untreated biomass were significantly different among taxa, with CT (113 and 75 mg g−1) and hybrids (108 and 81 mg g−1) yielding significantly higher glucose from untreated biomass than CCV (82 and 56 mg g−1) at ages 9 and 12 respectively. Comparison of traits within taxa between ages 9 and 12 found S/G ratios and glucose yields from untreated biomass were significantly lower in CT, CCV and hybrid taxa. In conclusion, the formation of lignocellulosic cell walls is complex, influenced by genetics and age of material, requiring optimization of rotation age for biofuel production and other industrial processes.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4xm3j10kData sources: Bielefeld Academic Search Engine (BASE)Biomass and BioenergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUSC Research Bank research dataArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4xm3j10kData sources: Bielefeld Academic Search Engine (BASE)Biomass and BioenergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUSC Research Bank research dataArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Australia, United StatesPublisher:Elsevier BV Authors:Robert J Henry;
Jason S. Lupoi; Robert W. Sykes; Robert W. Sykes; +13 AuthorsRobert J Henry
Robert J Henry in OpenAIRERobert J Henry;
Jason S. Lupoi; Robert W. Sykes; Robert W. Sykes; Joel M. Guenther; Joel M. Guenther;Robert J Henry
Robert J Henry in OpenAIREDavid J. Lee;
David J. Lee
David J. Lee in OpenAIREBlake A. Simmons;
Blake A. Simmons; Blake A. Simmons;Blake A. Simmons
Blake A. Simmons in OpenAIREStephen R. Decker;
Stephen R. Decker; Adam Healey; Seema Singh; Seema Singh; Kim Tran; Kim Tran;Stephen R. Decker
Stephen R. Decker in OpenAIRECorymbia (a eucalypt) is an important forestry genus and a potential lignocellulosic bioenergy feedstock. The composition of the lignocellulosic cell wall significantly impacts pretreatment efficiency and conversion to biofuel but is variable and changes with age. In this study, we estimated Klason lignin content, composition, and monosaccharide (glucose and xylose) release after enzymatic saccharification of untreated and hydrothermally pretreated biomass from Corymbia parental species Corymbia torelliana (CT), Corymbia citriodora subsp. variegata (spotted gum; CCV), and interspecific F1 hybrids (CT × CCV) at ages 9 and 12 years from planting. Analysis of lignin composition derived from syringyl/guaiacyl monolignols (S/G) found significant differences among taxa, with CT S/G ratios (2.2 and 2.0) being significantly lower than CCV (2.6 and 2.3) or hybrids (2.5 and 2.3) at ages 9 and 12 respectively. In general, enzymatic saccharification yields from untreated biomass were significantly different among taxa, with CT (113 and 75 mg g−1) and hybrids (108 and 81 mg g−1) yielding significantly higher glucose from untreated biomass than CCV (82 and 56 mg g−1) at ages 9 and 12 respectively. Comparison of traits within taxa between ages 9 and 12 found S/G ratios and glucose yields from untreated biomass were significantly lower in CT, CCV and hybrid taxa. In conclusion, the formation of lignocellulosic cell walls is complex, influenced by genetics and age of material, requiring optimization of rotation age for biofuel production and other industrial processes.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4xm3j10kData sources: Bielefeld Academic Search Engine (BASE)Biomass and BioenergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUSC Research Bank research dataArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4xm3j10kData sources: Bielefeld Academic Search Engine (BASE)Biomass and BioenergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUSC Research Bank research dataArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Authors:Leanda C. Garvie;
Leanda C. Garvie
Leanda C. Garvie in OpenAIREMark Brown;
Mark Brown
Mark Brown in OpenAIREDavid J. Lee;
David J. Lee
David J. Lee in OpenAIREBiljana Kulišić;
Biljana Kulišić
Biljana Kulišić in OpenAIREdoi: 10.1111/gcbb.13176
AbstractIn emerging markets, investment costs tend to be associated with uncertainty, especially if the investment is policy driven. Globally, nations have agreed to reduce greenhouse gas emissions to keep the temperature increase below 1.5°C by 2100. Australia faces challenges in achieving its Paris Agreement Nationally Determined Contributions and Agenda 2030 commitments, mostly given the extraction profile of its economy. Introducing renewable carbon from forest residues in the niche markets could increase the competitiveness of the forest industry not only in terms of reduced energy costs but also in terms of ‘greening’ the primary product. Growing interest in the bioenergy market, linked with large volumes of available biomass feedstocks including forest residues, presents opportunities in Australia. Yet, ambiguity about costs and concerns about biomass supply throttle the investment potential. This paper aims to estimate a range of forest residue costs along the supply chain for the Australian market by projecting the biomass supply costs from a mature bioenergy market onto it using a benchmarking process reinforced by expert opinion. A three‐round Delphi method in which experts indicated direction and range of costs along the forest biomass supply chain revealed that roadside costs of forest residues (other than stumps), and biomass transportation costs, are lower than or equal to and equal to or higher than, the EU costs respectively. Experts ranked investment and supply‐side support as priority areas for the development of forest bioenergy in Australia. The expert estimations of forest residue cost ranges along the supply chain offer the first layer for framing a national policy for forest bioenergy within the broader bioeconomy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Authors:Leanda C. Garvie;
Leanda C. Garvie
Leanda C. Garvie in OpenAIREMark Brown;
Mark Brown
Mark Brown in OpenAIREDavid J. Lee;
David J. Lee
David J. Lee in OpenAIREBiljana Kulišić;
Biljana Kulišić
Biljana Kulišić in OpenAIREdoi: 10.1111/gcbb.13176
AbstractIn emerging markets, investment costs tend to be associated with uncertainty, especially if the investment is policy driven. Globally, nations have agreed to reduce greenhouse gas emissions to keep the temperature increase below 1.5°C by 2100. Australia faces challenges in achieving its Paris Agreement Nationally Determined Contributions and Agenda 2030 commitments, mostly given the extraction profile of its economy. Introducing renewable carbon from forest residues in the niche markets could increase the competitiveness of the forest industry not only in terms of reduced energy costs but also in terms of ‘greening’ the primary product. Growing interest in the bioenergy market, linked with large volumes of available biomass feedstocks including forest residues, presents opportunities in Australia. Yet, ambiguity about costs and concerns about biomass supply throttle the investment potential. This paper aims to estimate a range of forest residue costs along the supply chain for the Australian market by projecting the biomass supply costs from a mature bioenergy market onto it using a benchmarking process reinforced by expert opinion. A three‐round Delphi method in which experts indicated direction and range of costs along the forest biomass supply chain revealed that roadside costs of forest residues (other than stumps), and biomass transportation costs, are lower than or equal to and equal to or higher than, the EU costs respectively. Experts ranked investment and supply‐side support as priority areas for the development of forest bioenergy in Australia. The expert estimations of forest residue cost ranges along the supply chain offer the first layer for framing a national policy for forest bioenergy within the broader bioeconomy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu