- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 Italy, CanadaPublisher:Elsevier BV Authors: Gabrielle Beaudry; Philippe Pasquier; Denis Marcotte; Angelo Zarrella;handle: 11577/3420654
Standing column wells offer a generous and flexible solution to improve the energy efficiency of the built environment. As these systems behavior is strongly affected by groundwater advection, the acute challenge of predicting their thermal evolution with both accuracy and computational efficiency has so far hindered the development of design tools and optimized control strategies. In this work, a powerful simulation algorithm is implemented and applied to the performance assessment of multi-borehole standing column well systems located in a heterogeneous geological environment and operating under various constant and dynamic flow rate control strategies. The iterative algorithm relies on the non-stationary convolution technique to simulate the underground components, and the EnergyPlus approach to represent the heat pump efficiency at full and part loads. The findings suggest that using higher flow rates in peak conditions is a key element that minimizes auxiliary assistance and power demand. Complementary variable flow rate control aiming to maintain a 2 °C temperature difference across the plate heat exchanger has shown to alleviate groundwater usage and generate at least 8%–11% annual energy savings compared with constant flow. This operating strategy allowed the systems to deliver 197–246 W/m with a heating seasonal performance factor of 3.59. These results were achieved through 34 annual simulations having hourly time steps that were performed with the proposed algorithm in a total of 4 h 17 min, compared to 11 days for a single simulation using a numerical reference model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 CanadaPublisher:Elsevier BV Funded by:NSERCNSERCGiulio Tonellato; Michaël Kummert; José Candanedo; Gabrielle Beaudry; Philippe Pasquier;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115492&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115492&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 Italy, CanadaPublisher:Elsevier BV Authors: Gabrielle Beaudry; Philippe Pasquier; Denis Marcotte; Angelo Zarrella;handle: 11577/3420654
Standing column wells offer a generous and flexible solution to improve the energy efficiency of the built environment. As these systems behavior is strongly affected by groundwater advection, the acute challenge of predicting their thermal evolution with both accuracy and computational efficiency has so far hindered the development of design tools and optimized control strategies. In this work, a powerful simulation algorithm is implemented and applied to the performance assessment of multi-borehole standing column well systems located in a heterogeneous geological environment and operating under various constant and dynamic flow rate control strategies. The iterative algorithm relies on the non-stationary convolution technique to simulate the underground components, and the EnergyPlus approach to represent the heat pump efficiency at full and part loads. The findings suggest that using higher flow rates in peak conditions is a key element that minimizes auxiliary assistance and power demand. Complementary variable flow rate control aiming to maintain a 2 °C temperature difference across the plate heat exchanger has shown to alleviate groundwater usage and generate at least 8%–11% annual energy savings compared with constant flow. This operating strategy allowed the systems to deliver 197–246 W/m with a heating seasonal performance factor of 3.59. These results were achieved through 34 annual simulations having hourly time steps that were performed with the proposed algorithm in a total of 4 h 17 min, compared to 11 days for a single simulation using a numerical reference model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 CanadaPublisher:Elsevier BV Funded by:NSERCNSERCGiulio Tonellato; Michaël Kummert; José Candanedo; Gabrielle Beaudry; Philippe Pasquier;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115492&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115492&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu