- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019Publisher:MDPI AG Sébastien Doutreloup; Christoph Kittel; Coraline Wyard; Alexandre Belleflamme; Charles Amory; Michel Erpicum; Xavier Fettweis;The first aim of this study is to determine if changes in precipitation and more specifically in convective precipitation are projected in a warmer climate over Belgium. The second aim is to evaluate if these changes are dependent on the convective scheme used. For this purpose, the regional climate model Modèle Atmosphérique Régional (MAR) was forced by two general circulation models (NorESM1-M and MIROC5) with five convective schemes (namely: two versions of the Bechtold schemes, the Betts–Miller–Janjić scheme, the Kain–Fritsch scheme, and the modified Tiedtke scheme) in order to assess changes in future precipitation quantities/distributions and associated uncertainties. In a warmer climate (using RCP8.5), our model simulates a small increase of convective precipitation, but lower than the anomalies and the interannual variability over the current climate, since all MAR experiments simulate a stronger warming in the upper troposphere than in the lower atmospheric layers, favoring more stable conditions. No change is also projected in extreme precipitation nor in the ratio of convective precipitation. While MAR is more sensitive to the convective scheme when forced by GCMs than when forced by ERA-Interim over the current climate, projected changes from all MAR experiments compare well.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4433/10/6/321/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos10060321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4433/10/6/321/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos10060321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019Publisher:MDPI AG Sébastien Doutreloup; Christoph Kittel; Coraline Wyard; Alexandre Belleflamme; Charles Amory; Michel Erpicum; Xavier Fettweis;The first aim of this study is to determine if changes in precipitation and more specifically in convective precipitation are projected in a warmer climate over Belgium. The second aim is to evaluate if these changes are dependent on the convective scheme used. For this purpose, the regional climate model Modèle Atmosphérique Régional (MAR) was forced by two general circulation models (NorESM1-M and MIROC5) with five convective schemes (namely: two versions of the Bechtold schemes, the Betts–Miller–Janjić scheme, the Kain–Fritsch scheme, and the modified Tiedtke scheme) in order to assess changes in future precipitation quantities/distributions and associated uncertainties. In a warmer climate (using RCP8.5), our model simulates a small increase of convective precipitation, but lower than the anomalies and the interannual variability over the current climate, since all MAR experiments simulate a stronger warming in the upper troposphere than in the lower atmospheric layers, favoring more stable conditions. No change is also projected in extreme precipitation nor in the ratio of convective precipitation. While MAR is more sensitive to the convective scheme when forced by GCMs than when forced by ERA-Interim over the current climate, projected changes from all MAR experiments compare well.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4433/10/6/321/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos10060321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4433/10/6/321/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos10060321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu