- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:International Journal of Sustainable Energy Planning and Management Authors: Marco Pellegrini; Augusto Bianchini; Alessandro Guzzini; Cesare Saccani;handle: 11585/696451
The revamping of existing high temperature district heating systems with low temperature solutions will ensure a better usage of primary energy thanks to the reduction of thermal losses through the networks and to the possibility of use low grade enthalpy heat for the scope, including renewables and waste heat. However, several criticalities are present that make the evolution from the 3rd to the 4th generation of district heating not immediate. The paper aims to identify general technological and non-technological barriers in the revamping of traditional district heating networks into low temperature ones, with a particular focus on the Italian framework. Possible solutions are suggested, including also relevant advices for decision makers. Furthermore, the paper analyses how the possible solutions required for the up-grade of the existing district heating network can be classified through the Analytic Hierarchy Process (AHP) to prioritize the best resulting ones for more advanced evaluations. International Journal of Sustainable Energy Planning and Management, Vol 20 (2019)
Archivio istituziona... arrow_drop_down International Journal of Sustainable Energy Planning and ManagementArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5278/ijsepm.2019.20.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down International Journal of Sustainable Energy Planning and ManagementArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5278/ijsepm.2019.20.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2006 ItalyPublisher:VOGEL TRANSTECH Publication Authors: BIANCHINI, AUGUSTO; L. Matrà; SACCANI, CESARE;handle: 11585/34735
The paper deals with the main features of an experimental pneumatic conveying plant developed at University of Bologna Lab. The main goal of this plant is to characterize transport properties of bulk solids conveyed in pneumatic plants. The facility is designed and instrumented to give information on flow conditions along the whole pipeline. The installation has all main characteristics of an industrial conveying plant, to supply with data comparable with those running in industrial process. It is also paired with a similar plant built in Reggio Emilia, Italy (a cooperation between Ariostea S.p.a. and University of Bologna), that completes the range of pneumatic conveying typology which can be analyzed. Measures, obtained during test runs, allow to validate prediction of a mathematical model developed to assist conveying plants design. To improve results given by the system, a strategy have been worked out, which allows to monitor many points of the plant by a smaller number of instruments. The communication between control system, instrumentation and actuators is realized by a Profibus DP/PA network, managed by a dedicated software developed in Visual Basic
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11585/34735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11585/34735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Bianchini, A.; Pellegrini, M.; Rossi, J.; Saccani, C.;handle: 11585/636380
Abstract Fine particulate matter (PM) emission from biomass boilers for non-industrial heating represents one of the most important causes (together with the transport sector) of air pollution, in particular during winter. Separation technologies for fine PM are already well-known and adopted on an industrial scale, as a consequence of strict limits set by national and international regulations. On domestic boilers, the same technologies utilized on an industrial scale are not feasible due to high investment costs. Moreover, the emission limits for small size biomass boilers are higher than for industrial boilers, so high efficiency separation technologies are not needed, and are sometimes not present at all. The main goal of the paper is the development and testing of a mathematical model that is able to foresee the PM removal efficiency of a wet scrubber device. After an experimental validation based on several tests, it was possible to approach the preliminary design of an innovative wet scrubber, which is described in the paper. The main characteristics are (i) removal efficiency over 99.9%, (ii) specific energy consumption under 36 kJ m−3, which is an industrial reference, and (iii) relatively low investment, operation and maintenance costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Marco Pellegrini; Arash Aghakhani; Alessandro Guzzini; Cesare Saccani;handle: 11585/893225
One of the most critical greenhouse gases in the atmosphere is carbon dioxide (CO2) due to its long-lasting and negative impact on climate change. The global atmospheric monthly mean CO2 concentration is currently greater than 410 ppm which has changed dramatically since the industrial era. To choose suitable climate change mitigation and adaptation strategies it is necessary to define carbon dioxide mass distribution and global atmospheric carbon dioxide mass. The available method to estimate the global atmospheric CO2 mass was proposed in 1980. In this study, to increase the accuracy of the available method, various observation platforms such as ground-based stations, ground-based tall towers, aircrafts, balloons, ships, and satellites are compared to define the best available observations, considering the temporal and spatial resolution. In the method proposed in this study, satellite observations (OCO2 data), from January 2019 to December 2021, are used to estimate atmospheric CO2 mass. The global atmospheric CO2 mass is estimated around 3.24 × 1015 kg in 2021. For the sake of comparison, global atmospheric CO2 mass was estimated by Fraser’s method using NOAA data for the mentioned study period. The proposed methodology in this study estimated slightly greater amounts of CO2 in comparison to Fraser’s method. This comparison resulted in 1.23% and 0.15% maximum and average difference, respectively, between the proposed method and Fraser’s method. The proposed method can be used to estimate the required capacity of systems for carbon capturing and can be applied to smaller districts to find the most critical locations in the world to plan for climate change mitigation and adaptation.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/6/866/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13060866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/6/866/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13060866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 ItalyPublisher:Elsevier BV Authors: BIANCHINI, AUGUSTO; PELLEGRINI, MARCO; SACCANI, CESARE;This paper describes an innovative process to increase superheated steam temperatures in waste-to-energy (WTE) plants. This solution is mainly characterised by a fluidised bed reactor in which hot flue gas is treated both chemically and mechanically. This approach, together with gas recirculation, increases the energy conversion efficiency, and raises the superheated steam temperature without decreasing the useful life of the superheater. This paper presents new experimental data obtained from the test facility installed at the Hera S.p.A. WTE plant in Forlì, Italy; discusses changes that can be implemented to increase the duration of experimental testing; offers suggestions for the design of an industrial solution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2008.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2008.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Funded by:EC | EN SGplusRegSysEC| EN SGplusRegSysGuzzini A.; Brunaccini G.; Aloisio D.; Pellegrini M.; Saccani C.; Sergi F.;doi: 10.3390/su15032080
handle: 20.500.14243/524754 , 11585/921492
Optimizing the hydrogen value chain is essential to ensure hydrogen market uptake in replacing traditional fossil fuel energy and to achieve energy system decarbonization in the next years. The design of new plants and infrastructures will be the first step. However, wrong decisions would result in temporal, economic losses and, in the worst case, failures. Because huge investments are expected, decision makers have to be assisted for its success. Because no tools are available for the optimum design and geographical location of power to gas (P2G) and power to hydrogen (P2H) plants, the geographic information system (GIS) and mathematical optimization approaches were combined into a new tool developed by CNR-ITAE and the University of Bologna in the SuperP2G project, aiming to support the interested stakeholders in the investigation and selection of the optimum size, location, and operations of P2H and P2G industrial plants while minimizing the levelized cost of hydrogen (LCOH). In the present study, the tool has been applied to hydrogen mobility, specifically to investigate the conversion of the existing refuelling stations on Italian highways to hydrogen refuelling stations (HRSs). Middle-term (2030) and long-term (2050) scenarios were investigated. In 2030, a potential demand of between 7000 and 10,000 tons/year was estimated in Italy, increasing to between 32,600 and 72,500 tons/year in 2050. The optimum P2H plant configuration to supply the HRS was calculated in different scenarios. Despite the optimization, even if the levelized cost of hydrogen (LCOH) reduces from 7.0–7.5 €/kg in 2030 to 5.6–6.2 €/kg in 2050, the results demonstrate that the replacement of the traditional fuels, i.e., gasoline, diesel, and liquefied petroleum gases (LPGs), will be disadvantaged without incentives or any other economic supporting schemes.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2080/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2080/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV BIANCHINI, AUGUSTO; CENTO, FRANCESCO; GOLFERA, LUCA; PELLEGRINI, MARCO; SACCANI, CESARE;handle: 11585/544665
Abstract Biomass boiler plants of small thermal power (under 35 kW thermal), in particular for domestic heating, have greatly contributed to the rise in particulate emissions. Several technologies, like fabric filters or electrostatic precipitators, can achieve high particulate removal efficiency, over 99%. However, the application of these technologies is limited by excessive prices and operational problems, since the high cost does not allow their use in small size plants. The paper shows a comparative performance analysis of different scrubber systems which have been designed, realized and tested with flue gas produced by biomass combustion in a 25 kW thermal boiler. The experimental campaigns were realized in the laboratory of the Department of Industrial Engineering of the University of Bologna. Experimental results demonstrate the achievements of particulate removal efficiency which is comparable with the efficiency of industrial technologies. Moreover, a preliminary energy balance was carried out to assess the energy cost of the different scrubber systems tested.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 ItalyPublisher:Elsevier BV S. Consonni; M. Giugliano; A. Massarutto; M. Ragazzi; SACCANI, CESARE;pmid: 21652196
handle: 11572/88045 , 11390/865146 , 11311/608947 , 11585/112769
This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on "how much" source separation is carried out, but rather on "how" a given SSL is reached.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2011.04.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2011.04.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Pellegrini M.; Guzzini A.; Saccani C.;handle: 11585/835793
Among renewable energy sources, the electrical generation at urban level from micro-wind turbines has not yet disclosed its potential. The increasing spread of micro-wind turbines may promote not only the decentralized generation of energy, but also helps to achieve reductions in the emission of greenhouse gases (GHGs) and to support the transition to transport system electrification. However, one of the barriers for the diffusion of micro-wind turbines in urban settlements is the difficulty to estimate its feasibility based on the local wind resource, which is highly site-specific and less predictable than other renewable sources in an urban framework (i.e. solar, biomass).The paper deals with extensive monitoring and analysis of a micro-wind turbine performed at the outdoor development center HEnergia of HERA S.p.A. in Forlì (Italy). The micro-wind turbine was remotely monitored and data on environmental conditions and electric energy production were continuously acquired and stored by a PC. Therefore, micro-wind turbine performance was measured on-site and correlated with environment conditions. The real energy production of the micro-wind turbine was measured and a method to estimate the performances based on local wind conditions was presented. Based on the results, a simplified approach to evaluate the economic feasibility of micro-wind turbine in urban areas based on the Levelized Cost Of Energy (LCOE) concept was also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.05.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.05.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Italy, NetherlandsPublisher:Elsevier BV Hoekstra N.; Pellegrini M.; Bloemendal M.; Spaak G.; Andreu Gallego A.; Rodriguez Comins J.; Grotenhuis T.; Picone S.; Murrell A. J.; Steeman H. J.; Verrone A.; Doornenbal P.; Christophersen M.; Bennedsen L.; Henssen M.; Moinier S.; Saccani C.;Heating and cooling using aquifer thermal energy storage (ATES) has hardly been applied outside the Netherlands, even though it could make a valuable contribution to the energy transition. The Climate-KIC project "Europe-wide Use of Energy from aquifers" - E-USE(aq) - aimed to pave the way for Europe-wide application of ATES, through the realization and monitoring of six ATES pilot plants across five different EU countries. In a preceding paper, based on preliminary results of E-USE(aq), conclusions were already drawn, demonstrating how the barriers for this form of shallow geothermal energy can be overcome, and sometimes even leveraged as opportunities. Based on final pilot project results, key economic and environmental outcomes are now presented. This paper starts with the analysis of specific technological barriers: unfamiliarity with the subsurface, presumed limited compatibility with existing energy provision systems (especially district heating), energy imbalances and groundwater contamination. The paper then shows how these barriers have been tackled, using improved site investigation and monitoring technologies to map heterogeneous subsoils. In this way ATES can cost-efficiently be included in smart grids and combined with other sources of renewable (especially solar) energy, while at the same time achieving groundwater remediation. A comparative assessment of economic and environmental impacts of the pilots is included, to demonstrate the sustainability of ATES system with different renewables and renewable-based technologies. The paper concludes with an assessment of the market application potential of ATES, including in areas with water scarcity, and a review of climate beneficial impact.
Archivio istituziona... arrow_drop_down The Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.136142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 39 Powered bymore_vert Archivio istituziona... arrow_drop_down The Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.136142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:International Journal of Sustainable Energy Planning and Management Authors: Marco Pellegrini; Augusto Bianchini; Alessandro Guzzini; Cesare Saccani;handle: 11585/696451
The revamping of existing high temperature district heating systems with low temperature solutions will ensure a better usage of primary energy thanks to the reduction of thermal losses through the networks and to the possibility of use low grade enthalpy heat for the scope, including renewables and waste heat. However, several criticalities are present that make the evolution from the 3rd to the 4th generation of district heating not immediate. The paper aims to identify general technological and non-technological barriers in the revamping of traditional district heating networks into low temperature ones, with a particular focus on the Italian framework. Possible solutions are suggested, including also relevant advices for decision makers. Furthermore, the paper analyses how the possible solutions required for the up-grade of the existing district heating network can be classified through the Analytic Hierarchy Process (AHP) to prioritize the best resulting ones for more advanced evaluations. International Journal of Sustainable Energy Planning and Management, Vol 20 (2019)
Archivio istituziona... arrow_drop_down International Journal of Sustainable Energy Planning and ManagementArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5278/ijsepm.2019.20.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down International Journal of Sustainable Energy Planning and ManagementArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5278/ijsepm.2019.20.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2006 ItalyPublisher:VOGEL TRANSTECH Publication Authors: BIANCHINI, AUGUSTO; L. Matrà; SACCANI, CESARE;handle: 11585/34735
The paper deals with the main features of an experimental pneumatic conveying plant developed at University of Bologna Lab. The main goal of this plant is to characterize transport properties of bulk solids conveyed in pneumatic plants. The facility is designed and instrumented to give information on flow conditions along the whole pipeline. The installation has all main characteristics of an industrial conveying plant, to supply with data comparable with those running in industrial process. It is also paired with a similar plant built in Reggio Emilia, Italy (a cooperation between Ariostea S.p.a. and University of Bologna), that completes the range of pneumatic conveying typology which can be analyzed. Measures, obtained during test runs, allow to validate prediction of a mathematical model developed to assist conveying plants design. To improve results given by the system, a strategy have been worked out, which allows to monitor many points of the plant by a smaller number of instruments. The communication between control system, instrumentation and actuators is realized by a Profibus DP/PA network, managed by a dedicated software developed in Visual Basic
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11585/34735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11585/34735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Bianchini, A.; Pellegrini, M.; Rossi, J.; Saccani, C.;handle: 11585/636380
Abstract Fine particulate matter (PM) emission from biomass boilers for non-industrial heating represents one of the most important causes (together with the transport sector) of air pollution, in particular during winter. Separation technologies for fine PM are already well-known and adopted on an industrial scale, as a consequence of strict limits set by national and international regulations. On domestic boilers, the same technologies utilized on an industrial scale are not feasible due to high investment costs. Moreover, the emission limits for small size biomass boilers are higher than for industrial boilers, so high efficiency separation technologies are not needed, and are sometimes not present at all. The main goal of the paper is the development and testing of a mathematical model that is able to foresee the PM removal efficiency of a wet scrubber device. After an experimental validation based on several tests, it was possible to approach the preliminary design of an innovative wet scrubber, which is described in the paper. The main characteristics are (i) removal efficiency over 99.9%, (ii) specific energy consumption under 36 kJ m−3, which is an industrial reference, and (iii) relatively low investment, operation and maintenance costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Marco Pellegrini; Arash Aghakhani; Alessandro Guzzini; Cesare Saccani;handle: 11585/893225
One of the most critical greenhouse gases in the atmosphere is carbon dioxide (CO2) due to its long-lasting and negative impact on climate change. The global atmospheric monthly mean CO2 concentration is currently greater than 410 ppm which has changed dramatically since the industrial era. To choose suitable climate change mitigation and adaptation strategies it is necessary to define carbon dioxide mass distribution and global atmospheric carbon dioxide mass. The available method to estimate the global atmospheric CO2 mass was proposed in 1980. In this study, to increase the accuracy of the available method, various observation platforms such as ground-based stations, ground-based tall towers, aircrafts, balloons, ships, and satellites are compared to define the best available observations, considering the temporal and spatial resolution. In the method proposed in this study, satellite observations (OCO2 data), from January 2019 to December 2021, are used to estimate atmospheric CO2 mass. The global atmospheric CO2 mass is estimated around 3.24 × 1015 kg in 2021. For the sake of comparison, global atmospheric CO2 mass was estimated by Fraser’s method using NOAA data for the mentioned study period. The proposed methodology in this study estimated slightly greater amounts of CO2 in comparison to Fraser’s method. This comparison resulted in 1.23% and 0.15% maximum and average difference, respectively, between the proposed method and Fraser’s method. The proposed method can be used to estimate the required capacity of systems for carbon capturing and can be applied to smaller districts to find the most critical locations in the world to plan for climate change mitigation and adaptation.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/6/866/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13060866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/6/866/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13060866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 ItalyPublisher:Elsevier BV Authors: BIANCHINI, AUGUSTO; PELLEGRINI, MARCO; SACCANI, CESARE;This paper describes an innovative process to increase superheated steam temperatures in waste-to-energy (WTE) plants. This solution is mainly characterised by a fluidised bed reactor in which hot flue gas is treated both chemically and mechanically. This approach, together with gas recirculation, increases the energy conversion efficiency, and raises the superheated steam temperature without decreasing the useful life of the superheater. This paper presents new experimental data obtained from the test facility installed at the Hera S.p.A. WTE plant in Forlì, Italy; discusses changes that can be implemented to increase the duration of experimental testing; offers suggestions for the design of an industrial solution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2008.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2008.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Funded by:EC | EN SGplusRegSysEC| EN SGplusRegSysGuzzini A.; Brunaccini G.; Aloisio D.; Pellegrini M.; Saccani C.; Sergi F.;doi: 10.3390/su15032080
handle: 20.500.14243/524754 , 11585/921492
Optimizing the hydrogen value chain is essential to ensure hydrogen market uptake in replacing traditional fossil fuel energy and to achieve energy system decarbonization in the next years. The design of new plants and infrastructures will be the first step. However, wrong decisions would result in temporal, economic losses and, in the worst case, failures. Because huge investments are expected, decision makers have to be assisted for its success. Because no tools are available for the optimum design and geographical location of power to gas (P2G) and power to hydrogen (P2H) plants, the geographic information system (GIS) and mathematical optimization approaches were combined into a new tool developed by CNR-ITAE and the University of Bologna in the SuperP2G project, aiming to support the interested stakeholders in the investigation and selection of the optimum size, location, and operations of P2H and P2G industrial plants while minimizing the levelized cost of hydrogen (LCOH). In the present study, the tool has been applied to hydrogen mobility, specifically to investigate the conversion of the existing refuelling stations on Italian highways to hydrogen refuelling stations (HRSs). Middle-term (2030) and long-term (2050) scenarios were investigated. In 2030, a potential demand of between 7000 and 10,000 tons/year was estimated in Italy, increasing to between 32,600 and 72,500 tons/year in 2050. The optimum P2H plant configuration to supply the HRS was calculated in different scenarios. Despite the optimization, even if the levelized cost of hydrogen (LCOH) reduces from 7.0–7.5 €/kg in 2030 to 5.6–6.2 €/kg in 2050, the results demonstrate that the replacement of the traditional fuels, i.e., gasoline, diesel, and liquefied petroleum gases (LPGs), will be disadvantaged without incentives or any other economic supporting schemes.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2080/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2080/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV BIANCHINI, AUGUSTO; CENTO, FRANCESCO; GOLFERA, LUCA; PELLEGRINI, MARCO; SACCANI, CESARE;handle: 11585/544665
Abstract Biomass boiler plants of small thermal power (under 35 kW thermal), in particular for domestic heating, have greatly contributed to the rise in particulate emissions. Several technologies, like fabric filters or electrostatic precipitators, can achieve high particulate removal efficiency, over 99%. However, the application of these technologies is limited by excessive prices and operational problems, since the high cost does not allow their use in small size plants. The paper shows a comparative performance analysis of different scrubber systems which have been designed, realized and tested with flue gas produced by biomass combustion in a 25 kW thermal boiler. The experimental campaigns were realized in the laboratory of the Department of Industrial Engineering of the University of Bologna. Experimental results demonstrate the achievements of particulate removal efficiency which is comparable with the efficiency of industrial technologies. Moreover, a preliminary energy balance was carried out to assess the energy cost of the different scrubber systems tested.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 ItalyPublisher:Elsevier BV S. Consonni; M. Giugliano; A. Massarutto; M. Ragazzi; SACCANI, CESARE;pmid: 21652196
handle: 11572/88045 , 11390/865146 , 11311/608947 , 11585/112769
This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on "how much" source separation is carried out, but rather on "how" a given SSL is reached.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2011.04.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2011.04.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Pellegrini M.; Guzzini A.; Saccani C.;handle: 11585/835793
Among renewable energy sources, the electrical generation at urban level from micro-wind turbines has not yet disclosed its potential. The increasing spread of micro-wind turbines may promote not only the decentralized generation of energy, but also helps to achieve reductions in the emission of greenhouse gases (GHGs) and to support the transition to transport system electrification. However, one of the barriers for the diffusion of micro-wind turbines in urban settlements is the difficulty to estimate its feasibility based on the local wind resource, which is highly site-specific and less predictable than other renewable sources in an urban framework (i.e. solar, biomass).The paper deals with extensive monitoring and analysis of a micro-wind turbine performed at the outdoor development center HEnergia of HERA S.p.A. in Forlì (Italy). The micro-wind turbine was remotely monitored and data on environmental conditions and electric energy production were continuously acquired and stored by a PC. Therefore, micro-wind turbine performance was measured on-site and correlated with environment conditions. The real energy production of the micro-wind turbine was measured and a method to estimate the performances based on local wind conditions was presented. Based on the results, a simplified approach to evaluate the economic feasibility of micro-wind turbine in urban areas based on the Levelized Cost Of Energy (LCOE) concept was also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.05.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.05.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Italy, NetherlandsPublisher:Elsevier BV Hoekstra N.; Pellegrini M.; Bloemendal M.; Spaak G.; Andreu Gallego A.; Rodriguez Comins J.; Grotenhuis T.; Picone S.; Murrell A. J.; Steeman H. J.; Verrone A.; Doornenbal P.; Christophersen M.; Bennedsen L.; Henssen M.; Moinier S.; Saccani C.;Heating and cooling using aquifer thermal energy storage (ATES) has hardly been applied outside the Netherlands, even though it could make a valuable contribution to the energy transition. The Climate-KIC project "Europe-wide Use of Energy from aquifers" - E-USE(aq) - aimed to pave the way for Europe-wide application of ATES, through the realization and monitoring of six ATES pilot plants across five different EU countries. In a preceding paper, based on preliminary results of E-USE(aq), conclusions were already drawn, demonstrating how the barriers for this form of shallow geothermal energy can be overcome, and sometimes even leveraged as opportunities. Based on final pilot project results, key economic and environmental outcomes are now presented. This paper starts with the analysis of specific technological barriers: unfamiliarity with the subsurface, presumed limited compatibility with existing energy provision systems (especially district heating), energy imbalances and groundwater contamination. The paper then shows how these barriers have been tackled, using improved site investigation and monitoring technologies to map heterogeneous subsoils. In this way ATES can cost-efficiently be included in smart grids and combined with other sources of renewable (especially solar) energy, while at the same time achieving groundwater remediation. A comparative assessment of economic and environmental impacts of the pilots is included, to demonstrate the sustainability of ATES system with different renewables and renewable-based technologies. The paper concludes with an assessment of the market application potential of ATES, including in areas with water scarcity, and a review of climate beneficial impact.
Archivio istituziona... arrow_drop_down The Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.136142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 39 Powered bymore_vert Archivio istituziona... arrow_drop_down The Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.136142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu