- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Publisher:Public Library of Science (PLoS) Xiaoli Fu; Wenjiang Zhang; Guirui Yu; Xiaoqin Dai; Mingjie Xu; Xiaomin Sun; Jie Song; Yunfen Liu; Yidong Wang; Xuefa Wen; Huimin Wang;Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003-2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003-2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May-June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0085593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0085593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:Copernicus GmbH Shilong Piao; Akihiko Ito; S. Li; Yao Huang; Philippe Ciais; X. Wang; Shushi Peng; R. J. Andres; Jingyun Fang; Sujong Jeong; Jiafu Mao; Anwar Mohammat; Hiroyuki Muraoka; Huijuan Nan; Changhui Peng; Philippe Peylin; Xiaoying Shi; Stephen Sitch; Shengli Tao; Hanqin Tian; Mingjie Xu; Guanghui Yu; Ning Zeng; Biao Zhu;Abstract. This REgional Carbon Cycle Assessment and Processes regional study provides a synthesis of the carbon balance of terrestrial ecosystems in East Asia, a region comprised of China, Japan, North- and South-Korea, and Mongolia. We estimate the current terrestrial carbon balance of East Asia and its driving mechanisms during 1990–2009 using three different approaches: inventories combined with satellite greenness measurements, terrestrial ecosystem carbon cycle models and atmospheric inversion models. The magnitudes of East Asia's natural carbon sink from these three approaches are comparable: −0.264 ± 0.033 Pg C yr−1 from inventory-remote sensing model-data fusion approach, −0.393 ± 0.141 Pg C yr−1 (not considering biofuel emissions) or −0.204 ± 0.141 Pg C yr−1 (considering biofuel emissions) for carbon cycle models, and −0.270 ± 0.507 Pg C yr−1 for atmospheric inverse models. The ensemble of ecosystem modeling based analyses further suggests that at the regional scale, climate change and rising atmospheric CO2 together resulted in a carbon sink of −0.289 ± 0.135 Pg C yr−1, while land use change and nitrogen deposition had a contribution of −0.013 ± 0.029 Pg C yr−1 and −0.107 ± 0.025 Pg C yr−1, respectively. Although the magnitude of climate change effects on the carbon balance varies among different models, all models agree that in response to climate change alone, southern China experienced an increase in carbon storage from 1990 to 2009, while northern East Asia including Mongolia and north China showed a decrease in carbon storage. Overall, our results suggest that about 13–26% of East Asia's CO2 emissions from fossil fuel burning have been offset by carbon accumulation in its terrestrial ecosystems over the period from 1990 to 2009. The underlying mechanisms of carbon sink over East Asia still remain largely uncertain, given the diversity and intensity of land management processes, and the regional conjunction of many drivers such as nutrient deposition, climate, atmospheric pollution and CO2 changes, which cannot be considered as independent for their effects on carbon storage.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-4025-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-4025-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:Springer Science and Business Media LLC Mingjie Xu; Mingjie Xu; Shuli Niu; Michael C. Wimberly; Xianzhou Zhang; Juntao Zhu; Yangjian Zhang; Guirui Yu; Tao Zhang; Yi Xi; Jingsheng Wang;AbstractTo explore grazing effects on carbon fluxes in alpine meadow ecosystems, we used a paired eddy-covariance (EC) system to measure carbon fluxes in adjacent fenced (FM) and grazed (GM) meadows on the Tibetan plateau. Gross primary productivity (GPP) and ecosystem respiration (Re) were greater at GM than FM for the first two years of fencing. In the third year, the productivity at FM increased to a level similar to the GM site. The higher productivity at GM was mainly caused by its higher photosynthetic capacity. Grazing exclusion did not increase carbon sequestration capacity for this alpine grassland system. The higher optimal photosynthetic temperature and the weakened ecosystem response to climatic factors at GM may help to facilitate the adaption of alpine meadow ecosystems to changing climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep15949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep15949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Authors: Mingjie Xu; Lelys Bravo de Guenni; José Córdova;pmid: 38489074
pmc: PMC10943172
AbstractThe increasing intensity and frequency of rainfall events, a critical aspect of climate change, pose significant challenges in the construction of intensity–duration–frequency (IDF) curves for climate projection. These curves are crucial for infrastructure development, but the non-stationarity of extreme rainfall raises concerns about their adequacy under future climate conditions. This research addresses these challenges by investigating the reasons behind the IPCC climate report’s evidence about the validity that rainfall follows the Clausius-Clapeyron (CC) relationship, which suggests a 7% increase in precipitation per 1 °C increase in temperature. Our study provides guidelines for adjusting IDF curves in the future, considering both current and future climates. We calculate extreme precipitation changes and scaling factors for small urban catchments in Barranquilla, Colombia, a tropical region, using the bootstrapping method. This reveals the occurrence of a sub-CC relationship, suggesting that the generalized 7% figure may not be universally applicable. In contrast, our comparative analysis with Illinois, USA, an inland city in the north temperate zone, shows adherence to the CC relationship. This emphasizes the need for local parameter calculations rather than relying solely on the generalized 7% figure.
Environmental Monito... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-024-12532-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Monito... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-024-12532-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Publisher:Public Library of Science (PLoS) Xiaoli Fu; Wenjiang Zhang; Guirui Yu; Xiaoqin Dai; Mingjie Xu; Xiaomin Sun; Jie Song; Yunfen Liu; Yidong Wang; Xuefa Wen; Huimin Wang;Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003-2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003-2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May-June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0085593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0085593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:Copernicus GmbH Shilong Piao; Akihiko Ito; S. Li; Yao Huang; Philippe Ciais; X. Wang; Shushi Peng; R. J. Andres; Jingyun Fang; Sujong Jeong; Jiafu Mao; Anwar Mohammat; Hiroyuki Muraoka; Huijuan Nan; Changhui Peng; Philippe Peylin; Xiaoying Shi; Stephen Sitch; Shengli Tao; Hanqin Tian; Mingjie Xu; Guanghui Yu; Ning Zeng; Biao Zhu;Abstract. This REgional Carbon Cycle Assessment and Processes regional study provides a synthesis of the carbon balance of terrestrial ecosystems in East Asia, a region comprised of China, Japan, North- and South-Korea, and Mongolia. We estimate the current terrestrial carbon balance of East Asia and its driving mechanisms during 1990–2009 using three different approaches: inventories combined with satellite greenness measurements, terrestrial ecosystem carbon cycle models and atmospheric inversion models. The magnitudes of East Asia's natural carbon sink from these three approaches are comparable: −0.264 ± 0.033 Pg C yr−1 from inventory-remote sensing model-data fusion approach, −0.393 ± 0.141 Pg C yr−1 (not considering biofuel emissions) or −0.204 ± 0.141 Pg C yr−1 (considering biofuel emissions) for carbon cycle models, and −0.270 ± 0.507 Pg C yr−1 for atmospheric inverse models. The ensemble of ecosystem modeling based analyses further suggests that at the regional scale, climate change and rising atmospheric CO2 together resulted in a carbon sink of −0.289 ± 0.135 Pg C yr−1, while land use change and nitrogen deposition had a contribution of −0.013 ± 0.029 Pg C yr−1 and −0.107 ± 0.025 Pg C yr−1, respectively. Although the magnitude of climate change effects on the carbon balance varies among different models, all models agree that in response to climate change alone, southern China experienced an increase in carbon storage from 1990 to 2009, while northern East Asia including Mongolia and north China showed a decrease in carbon storage. Overall, our results suggest that about 13–26% of East Asia's CO2 emissions from fossil fuel burning have been offset by carbon accumulation in its terrestrial ecosystems over the period from 1990 to 2009. The underlying mechanisms of carbon sink over East Asia still remain largely uncertain, given the diversity and intensity of land management processes, and the regional conjunction of many drivers such as nutrient deposition, climate, atmospheric pollution and CO2 changes, which cannot be considered as independent for their effects on carbon storage.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-4025-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-4025-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:Springer Science and Business Media LLC Mingjie Xu; Mingjie Xu; Shuli Niu; Michael C. Wimberly; Xianzhou Zhang; Juntao Zhu; Yangjian Zhang; Guirui Yu; Tao Zhang; Yi Xi; Jingsheng Wang;AbstractTo explore grazing effects on carbon fluxes in alpine meadow ecosystems, we used a paired eddy-covariance (EC) system to measure carbon fluxes in adjacent fenced (FM) and grazed (GM) meadows on the Tibetan plateau. Gross primary productivity (GPP) and ecosystem respiration (Re) were greater at GM than FM for the first two years of fencing. In the third year, the productivity at FM increased to a level similar to the GM site. The higher productivity at GM was mainly caused by its higher photosynthetic capacity. Grazing exclusion did not increase carbon sequestration capacity for this alpine grassland system. The higher optimal photosynthetic temperature and the weakened ecosystem response to climatic factors at GM may help to facilitate the adaption of alpine meadow ecosystems to changing climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep15949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep15949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Authors: Mingjie Xu; Lelys Bravo de Guenni; José Córdova;pmid: 38489074
pmc: PMC10943172
AbstractThe increasing intensity and frequency of rainfall events, a critical aspect of climate change, pose significant challenges in the construction of intensity–duration–frequency (IDF) curves for climate projection. These curves are crucial for infrastructure development, but the non-stationarity of extreme rainfall raises concerns about their adequacy under future climate conditions. This research addresses these challenges by investigating the reasons behind the IPCC climate report’s evidence about the validity that rainfall follows the Clausius-Clapeyron (CC) relationship, which suggests a 7% increase in precipitation per 1 °C increase in temperature. Our study provides guidelines for adjusting IDF curves in the future, considering both current and future climates. We calculate extreme precipitation changes and scaling factors for small urban catchments in Barranquilla, Colombia, a tropical region, using the bootstrapping method. This reveals the occurrence of a sub-CC relationship, suggesting that the generalized 7% figure may not be universally applicable. In contrast, our comparative analysis with Illinois, USA, an inland city in the north temperate zone, shows adherence to the CC relationship. This emphasizes the need for local parameter calculations rather than relying solely on the generalized 7% figure.
Environmental Monito... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-024-12532-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Monito... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-024-12532-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu