- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2009 United StatesPublisher:Emerald Authors: Jennifer Andrews; Cameron P. Wake; Sara M. Cleaves; Brett Pasinella;PurposeThe purpose of this paper is to discuss the recent history of climate action planning at the University of New Hampshire (UNH), a public university with a long history of sustainability action and commitment. Items discussed include a partnership with Clean Air‐Cool Planet (CA‐CP) to produce a greenhouse gas (GHG) inventory tool that adapted national and international inventory methodologies to the unique scale and character of a university community; involvement of administrators, faculty, staff and students in climate action planning, including to meet the requirements of the American College & University Presidents' Climate Commitment (ACUPCC); and the role of climate action planning within a broader institutional goal of integrating sustainability across curricula, operations, research and engagement efforts.Design/methodology/approachBackground and historical information is shared in terms of best practices and lessons learned.FindingsSuccessful climate action planning includes campus‐wide stakeholder involvement, an institution‐wide commitment to sustainability, and careful planning and partnerships that tie into a higher education institution's educational mission and identity and that take into account the culture and sense of place of each institution.Practical implicationsThe paper contains lessons learned and best practices from which other institutions of higher education might learn.Originality/valueUNH, a recognized national leader in sustainability and climate protection, and CA‐CP developed one of the first emissions inventory tools for higher education in the USA. The tool has been adopted by more than 1,000 campuses and was adopted by the ACUPCC as the recommended tool for campuses not already participating in another GHG inventorying program. Instead of recreating the wheel, campuses may be able to learn from UNH and CA‐CP's climate planning experience and history.
International Journa... arrow_drop_down International Journal of Sustainability in Higher EducationArticle . 2009 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefInternational Journal of Sustainability in Higher EducationJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/14676370910972567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Sustainability in Higher EducationArticle . 2009 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefInternational Journal of Sustainability in Higher EducationJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/14676370910972567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United StatesPublisher:Emerald Authors: Jennifer Andrews; Cameron P. Wake; Sara M. Cleaves; Brett Pasinella;PurposeThe purpose of this paper is to discuss the recent history of climate action planning at the University of New Hampshire (UNH), a public university with a long history of sustainability action and commitment. Items discussed include a partnership with Clean Air‐Cool Planet (CA‐CP) to produce a greenhouse gas (GHG) inventory tool that adapted national and international inventory methodologies to the unique scale and character of a university community; involvement of administrators, faculty, staff and students in climate action planning, including to meet the requirements of the American College & University Presidents' Climate Commitment (ACUPCC); and the role of climate action planning within a broader institutional goal of integrating sustainability across curricula, operations, research and engagement efforts.Design/methodology/approachBackground and historical information is shared in terms of best practices and lessons learned.FindingsSuccessful climate action planning includes campus‐wide stakeholder involvement, an institution‐wide commitment to sustainability, and careful planning and partnerships that tie into a higher education institution's educational mission and identity and that take into account the culture and sense of place of each institution.Practical implicationsThe paper contains lessons learned and best practices from which other institutions of higher education might learn.Originality/valueUNH, a recognized national leader in sustainability and climate protection, and CA‐CP developed one of the first emissions inventory tools for higher education in the USA. The tool has been adopted by more than 1,000 campuses and was adopted by the ACUPCC as the recommended tool for campuses not already participating in another GHG inventorying program. Instead of recreating the wheel, campuses may be able to learn from UNH and CA‐CP's climate planning experience and history.
International Journa... arrow_drop_down International Journal of Sustainability in Higher EducationArticle . 2009 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefInternational Journal of Sustainability in Higher EducationJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/14676370910972567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Sustainability in Higher EducationArticle . 2009 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefInternational Journal of Sustainability in Higher EducationJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/14676370910972567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Resilience Alliance, Inc. Funded by:NSF | Interactions Among Climat...NSF| Interactions Among Climate, Land Use, Ecosystem Services and SocietyMark E. Borsuk; Wilfred M. Wollheim; Curt Grimm; Madeleine M. Mineau; Nihar R. Samal; Shan Zuidema; Georgia Mavrommati; David A. Lutz; Alexandra M. Thorn; Kevin H. Gardner; Cameron P. Wake; Shannon H. Rogers; Richard B. Howarth;We evaluate the relative desirability of alternative futures for the upper Merrimack River watershed in New Hampshire, USA based on the value of ecosystem services at the end of the 21st century as gauged by its present-day inhabitants. This evaluation is accomplished by integrating land-use and socioeconomic scenarios, downscaled climate projections, biogeophysical simulation models, and the results of a citizen-stakeholder deliberative multicriteria evaluation. We find that although there are some trade-offs between alternative plausible futures, for the most part, it can be expected that future inhabitants of the watershed will be most satisfied if land-use planning in the intervening years prioritizes water supply and flood protection as well as maintenance of existing farmland and forest cover. With respect to climate change, it is expected that future watershed inhabitants will be more negatively affected by the projected loss of snow cover than the anticipated increase in hot summer days. More important than the specific results for the upper Merrimack River watershed, this integrative assessment demonstrates the complex yet ultimately informative potential to link stakeholder engagement with scenario generation, ecosystem models, and multiattribute evaluation for informing regional-scale planning and decision making.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10806-240211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10806-240211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Resilience Alliance, Inc. Funded by:NSF | Interactions Among Climat...NSF| Interactions Among Climate, Land Use, Ecosystem Services and SocietyMark E. Borsuk; Wilfred M. Wollheim; Curt Grimm; Madeleine M. Mineau; Nihar R. Samal; Shan Zuidema; Georgia Mavrommati; David A. Lutz; Alexandra M. Thorn; Kevin H. Gardner; Cameron P. Wake; Shannon H. Rogers; Richard B. Howarth;We evaluate the relative desirability of alternative futures for the upper Merrimack River watershed in New Hampshire, USA based on the value of ecosystem services at the end of the 21st century as gauged by its present-day inhabitants. This evaluation is accomplished by integrating land-use and socioeconomic scenarios, downscaled climate projections, biogeophysical simulation models, and the results of a citizen-stakeholder deliberative multicriteria evaluation. We find that although there are some trade-offs between alternative plausible futures, for the most part, it can be expected that future inhabitants of the watershed will be most satisfied if land-use planning in the intervening years prioritizes water supply and flood protection as well as maintenance of existing farmland and forest cover. With respect to climate change, it is expected that future watershed inhabitants will be more negatively affected by the projected loss of snow cover than the anticipated increase in hot summer days. More important than the specific results for the upper Merrimack River watershed, this integrative assessment demonstrates the complex yet ultimately informative potential to link stakeholder engagement with scenario generation, ecosystem models, and multiattribute evaluation for informing regional-scale planning and decision making.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10806-240211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10806-240211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United StatesPublisher:Springer Science and Business Media LLC Frumhoff, Peter C; McCarthy, James J; Melillo, Jerry M; Moser, Susanne C; Wuebbles, Donald; Wake, Cameron P; Spanger-Siegfried, Erika;The papers in this Special Issue are the primary technical underpinnings for the Northeast Climate Impacts Assessment (NECIA), an integrated regional-scale assessment of projected climate change, impacts and options for mitigation and adaptation across the US Northeast. The consequences of future pathways of greenhouse gas emissions on projected climate and impacts across climate-sensitive sectors is assessed by using downscaled projections from three global climate models under both higher (Alfi) and lower (B1) emissions scenarios. The findings illustrate that near-term reductions in emissions can greatly reduce the extent and severity of regionally important impacts on natural and managed ecosystems and public health in the latter half of this century, and increase the feasibility that those impacts which are now unavoidable can be successfully managed through adaptation.
Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9138-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9138-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United StatesPublisher:Springer Science and Business Media LLC Frumhoff, Peter C; McCarthy, James J; Melillo, Jerry M; Moser, Susanne C; Wuebbles, Donald; Wake, Cameron P; Spanger-Siegfried, Erika;The papers in this Special Issue are the primary technical underpinnings for the Northeast Climate Impacts Assessment (NECIA), an integrated regional-scale assessment of projected climate change, impacts and options for mitigation and adaptation across the US Northeast. The consequences of future pathways of greenhouse gas emissions on projected climate and impacts across climate-sensitive sectors is assessed by using downscaled projections from three global climate models under both higher (Alfi) and lower (B1) emissions scenarios. The findings illustrate that near-term reductions in emissions can greatly reduce the extent and severity of regionally important impacts on natural and managed ecosystems and public health in the latter half of this century, and increase the feasibility that those impacts which are now unavoidable can be successfully managed through adaptation.
Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9138-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9138-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Wiley William H. McDowell; Alexandra R. Contosta; Cameron P. Wake; Mary R. Albert; A. C. Adolph; Denise Burchsted; Elizabeth A. Burakowski; Elizabeth A. Burakowski; Wilfred M. Wollheim; David Guerra; Mark B. Green; Jack E. Dibb; Rachel J. Whitaker; Mary E. Martin; Michael R. Routhier;doi: 10.1111/gcb.13517
pmid: 27808458
AbstractClimate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire,USA, that concurrently monitored climate, snow, soils, and streams over a three‐year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero‐length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter‐to‐spring transition and throughout the rest of the year.
University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2017License: CC BY NC NDFull-Text: https://scholars.unh.edu/ersc/43Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2017License: CC BY NC NDFull-Text: https://scholars.unh.edu/ersc/43Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Wiley William H. McDowell; Alexandra R. Contosta; Cameron P. Wake; Mary R. Albert; A. C. Adolph; Denise Burchsted; Elizabeth A. Burakowski; Elizabeth A. Burakowski; Wilfred M. Wollheim; David Guerra; Mark B. Green; Jack E. Dibb; Rachel J. Whitaker; Mary E. Martin; Michael R. Routhier;doi: 10.1111/gcb.13517
pmid: 27808458
AbstractClimate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire,USA, that concurrently monitored climate, snow, soils, and streams over a three‐year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero‐length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter‐to‐spring transition and throughout the rest of the year.
University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2017License: CC BY NC NDFull-Text: https://scholars.unh.edu/ersc/43Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2017License: CC BY NC NDFull-Text: https://scholars.unh.edu/ersc/43Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United StatesPublisher:Springer Science and Business Media LLC Hayhoe, Katharine; Wake, Cameron P; Anderson, Bruce T.; Liang, Xin-Zhong; Maurer, Edwin; Zhu, Jinhong; Bradbury, James A; DeGaetano, Art; Stoner, Anne Marie; Wuebbles, Donald;Climate projections at relevant temporal and spatial scales are essential to assess potential future climate change impacts on climatologically diverse regions such as the northeast United States. Here, we show how both statistical and dynamical downscaling methods applied to relatively coarse-scale atmosphere-ocean general circulation model output are able to improve simulation of spatial and temporal variability in temperature and precipitation across the region. We then develop high-resolution projections of future climate change across the northeast USA, using IPCC SRES emission scenarios combined with these downscaling methods. The projections show increases in temperature that are larger at higher latitudes and inland, as well as the potential for changing precipitation patterns, particularly along the coast. While the absolute magnitude of change expected over the coming century depends on the sensitivity of the climate system to human forcing, significantly higher increases in temperature and in winter precipitation are expected under a higher as compared to lower scenario of future emissions from human activities.
Santa Clara Universi... arrow_drop_down Santa Clara University: Scholar CommonsArticle . 2008Full-Text: https://scholarcommons.scu.edu/ceng/49Data sources: Bielefeld Academic Search Engine (BASE)Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9133-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 228 citations 228 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Santa Clara Universi... arrow_drop_down Santa Clara University: Scholar CommonsArticle . 2008Full-Text: https://scholarcommons.scu.edu/ceng/49Data sources: Bielefeld Academic Search Engine (BASE)Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9133-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United StatesPublisher:Springer Science and Business Media LLC Hayhoe, Katharine; Wake, Cameron P; Anderson, Bruce T.; Liang, Xin-Zhong; Maurer, Edwin; Zhu, Jinhong; Bradbury, James A; DeGaetano, Art; Stoner, Anne Marie; Wuebbles, Donald;Climate projections at relevant temporal and spatial scales are essential to assess potential future climate change impacts on climatologically diverse regions such as the northeast United States. Here, we show how both statistical and dynamical downscaling methods applied to relatively coarse-scale atmosphere-ocean general circulation model output are able to improve simulation of spatial and temporal variability in temperature and precipitation across the region. We then develop high-resolution projections of future climate change across the northeast USA, using IPCC SRES emission scenarios combined with these downscaling methods. The projections show increases in temperature that are larger at higher latitudes and inland, as well as the potential for changing precipitation patterns, particularly along the coast. While the absolute magnitude of change expected over the coming century depends on the sensitivity of the climate system to human forcing, significantly higher increases in temperature and in winter precipitation are expected under a higher as compared to lower scenario of future emissions from human activities.
Santa Clara Universi... arrow_drop_down Santa Clara University: Scholar CommonsArticle . 2008Full-Text: https://scholarcommons.scu.edu/ceng/49Data sources: Bielefeld Academic Search Engine (BASE)Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9133-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 228 citations 228 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Santa Clara Universi... arrow_drop_down Santa Clara University: Scholar CommonsArticle . 2008Full-Text: https://scholarcommons.scu.edu/ceng/49Data sources: Bielefeld Academic Search Engine (BASE)Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9133-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Chalif, Jacob; Winski, Dominic; Osterberg, Erich; Wake, Cameron; Edwards, Ross; Dibb, Jack; Scheuer, Eric; Saltzman, Eric; Kehrwald, Natalie; Hantson, Stijn;This project intends to use the Mount Denali ice core archive to develop the most comprehensive suite of North Pacific fire and summer climate proxy records since about 2500 years before present. Wildfire is a key component of summer climate in the North Pacific where wildfires are projected to increase with continued summer warming. Studies that combine paleorecords of summer climate and wildfire are therefore critically needed, especially in the North Pacific region where fire recurrence rate and decadal-to-centennial scale climate fluctuations occur over longer time periods than are covered by direct observations. The goal of the proposed research is to improve our understanding of relationships between summertime climate and wildfire activity, focusing especially on the Medieval Climate Anomaly (MCA), when regional temperatures were perhaps as warm as the 20th century. Recent advances now permit the measurement of new fire-related (pyrogenic) compounds in ice cores, enabling the development of a robust fire record capable of rigorous comparison with regional paleoclimate reconstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2ks6j63d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2ks6j63d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Chalif, Jacob; Winski, Dominic; Osterberg, Erich; Wake, Cameron; Edwards, Ross; Dibb, Jack; Scheuer, Eric; Saltzman, Eric; Kehrwald, Natalie; Hantson, Stijn;This project intends to use the Mount Denali ice core archive to develop the most comprehensive suite of North Pacific fire and summer climate proxy records since about 2500 years before present. Wildfire is a key component of summer climate in the North Pacific where wildfires are projected to increase with continued summer warming. Studies that combine paleorecords of summer climate and wildfire are therefore critically needed, especially in the North Pacific region where fire recurrence rate and decadal-to-centennial scale climate fluctuations occur over longer time periods than are covered by direct observations. The goal of the proposed research is to improve our understanding of relationships between summertime climate and wildfire activity, focusing especially on the Medieval Climate Anomaly (MCA), when regional temperatures were perhaps as warm as the 20th century. Recent advances now permit the measurement of new fire-related (pyrogenic) compounds in ice cores, enabling the development of a robust fire record capable of rigorous comparison with regional paleoclimate reconstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2ks6j63d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2ks6j63d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Chalif, Jacob; Winski, Dominic; Osterberg, Erich; Wake, Cameron; Edwards, Ross; Dibb, Jack; Scheuer, Eric; Saltzman, Eric; Kerhwald, Natalie; Hantson, Stijn;doi: 10.18739/a2q52ff5s
This project intends to use the Mount Denali ice core archive to develop the most comprehensive suite of North Pacific fire and summer climate proxy records since about 2500 years before present. Wildfire is a key component of summer climate in the North Pacific where wildfires are projected to increase with continued summer warming. Studies that combine paleorecords of summer climate and wildfire are therefore critically needed, especially in the North Pacific region where fire recurrence rate and decadal-to-centennial scale climate fluctuations occur over longer time periods than are covered by direct observations. The goal of the proposed research is to improve our understanding of relationships between summertime climate and wildfire activity, focusing especially on the Medieval Climate Anomaly (MCA), when regional temperatures were perhaps as warm as the 20th century. Recent advances now permit the measurement of new fire-related (pyrogenic) compounds in ice cores, enabling the development of a robust fire record capable of rigorous comparison with regional paleoclimate reconstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2q52ff5s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2q52ff5s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Chalif, Jacob; Winski, Dominic; Osterberg, Erich; Wake, Cameron; Edwards, Ross; Dibb, Jack; Scheuer, Eric; Saltzman, Eric; Kerhwald, Natalie; Hantson, Stijn;doi: 10.18739/a2q52ff5s
This project intends to use the Mount Denali ice core archive to develop the most comprehensive suite of North Pacific fire and summer climate proxy records since about 2500 years before present. Wildfire is a key component of summer climate in the North Pacific where wildfires are projected to increase with continued summer warming. Studies that combine paleorecords of summer climate and wildfire are therefore critically needed, especially in the North Pacific region where fire recurrence rate and decadal-to-centennial scale climate fluctuations occur over longer time periods than are covered by direct observations. The goal of the proposed research is to improve our understanding of relationships between summertime climate and wildfire activity, focusing especially on the Medieval Climate Anomaly (MCA), when regional temperatures were perhaps as warm as the 20th century. Recent advances now permit the measurement of new fire-related (pyrogenic) compounds in ice cores, enabling the development of a robust fire record capable of rigorous comparison with regional paleoclimate reconstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2q52ff5s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2q52ff5s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:The Arctic Institute of North America Zdanowicz, Christian; Fisher, David; Bourgeois, Jocelyne; Demuth, Mike; Zheng, James; Mayewski, Paul A; Kreutz, K; Osterberg, Erich; Yalcin, Kaplan; Wake, Cameron P; Steig, Eric J; Froese, Duane; Goto-Azuma, Kumiko;doi: 10.14430/arctic4352
A major achievement in research supported by the Kluane Lake Research Station was the recovery, in 2001 – 02, of a suite of cores from the icefields of the central St. Elias Mountains, Yukon, by teams of researchers from Canada, the United States, and Japan. This project led to the development of parallel, long (103 – 104 year) ice-core records of climate and atmospheric change over an altitudinal range of more than 2 km, from the Eclipse Icefield (3017 m) to the ice-covered plateau of Mt. Logan (5340 m). These efforts built on earlier work recovering single ice cores in this region. Comparison of these records has allowed for variations in climate and atmospheric composition to be linked with changes in the vertical structure and dynamics of the North Pacific atmosphere, providing a unique perspective on these changes over the Holocene. Owing to their privileged location, cores from the St. Elias Icefields also contain a remarkably detailed record of aerosols from various sources around or across the North Pacific. In this paper we review major scientific findings from the study of St. Elias Mountain ice cores, focusing on five main themes: (1) The record of stable water isotopes (δ18O, δD), which has unique characteristics that differ from those of Greenland, other Arctic ice cores, and even among sites in the St. Elias; (2) the snow accumulation history; (3) the record of pollen, biomass burning aerosol, and desert dust deposition; (4) the record of long-range air pollutant deposition (sulphate and lead); and (5) the record of paleo-volcanism. Our discussion draws on studies published since 2000, but based on older ice cores from the St. Elias Mountains obtained in 1980 and 1996.
ARCTIC arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14430/arctic4352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ARCTIC arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14430/arctic4352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:The Arctic Institute of North America Zdanowicz, Christian; Fisher, David; Bourgeois, Jocelyne; Demuth, Mike; Zheng, James; Mayewski, Paul A; Kreutz, K; Osterberg, Erich; Yalcin, Kaplan; Wake, Cameron P; Steig, Eric J; Froese, Duane; Goto-Azuma, Kumiko;doi: 10.14430/arctic4352
A major achievement in research supported by the Kluane Lake Research Station was the recovery, in 2001 – 02, of a suite of cores from the icefields of the central St. Elias Mountains, Yukon, by teams of researchers from Canada, the United States, and Japan. This project led to the development of parallel, long (103 – 104 year) ice-core records of climate and atmospheric change over an altitudinal range of more than 2 km, from the Eclipse Icefield (3017 m) to the ice-covered plateau of Mt. Logan (5340 m). These efforts built on earlier work recovering single ice cores in this region. Comparison of these records has allowed for variations in climate and atmospheric composition to be linked with changes in the vertical structure and dynamics of the North Pacific atmosphere, providing a unique perspective on these changes over the Holocene. Owing to their privileged location, cores from the St. Elias Icefields also contain a remarkably detailed record of aerosols from various sources around or across the North Pacific. In this paper we review major scientific findings from the study of St. Elias Mountain ice cores, focusing on five main themes: (1) The record of stable water isotopes (δ18O, δD), which has unique characteristics that differ from those of Greenland, other Arctic ice cores, and even among sites in the St. Elias; (2) the snow accumulation history; (3) the record of pollen, biomass burning aerosol, and desert dust deposition; (4) the record of long-range air pollutant deposition (sulphate and lead); and (5) the record of paleo-volcanism. Our discussion draws on studies published since 2000, but based on older ice cores from the St. Elias Mountains obtained in 1980 and 1996.
ARCTIC arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14430/arctic4352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ARCTIC arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14430/arctic4352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United StatesPublisher:SAGE Publications Funded by:NSF | Interactions Among Climat...NSF| Interactions Among Climate, Land Use, Ecosystem Services and SocietyHamilton, Lawrence C.; Wake, Cameron P.; Hartter, Joel N.; Safford, Thomas G.; Puchlopek, Alli J.;Research has led to broad agreement among scientists that anthropogenic climate change is happening now and likely to worsen. In contrast to scientific agreement, US public views remain deeply divided, largely along ideological lines. Science communication has been neutralised in some arenas by intense counter-messaging, but as adverse climate impacts become manifest they might intervene more persuasively in local perceptions. We look for evidence of this occurring with regard to realities and perceptions of flooding in the northeastern US state of New Hampshire. Although precipitation and flood damage have increased, with ample news coverage, most residents do not see a trend. Nor do perceptions about past and future local flooding correlate with regional impacts or vulnerability. Instead, such perceptions follow ideological patterns resembling those of global climate change. That information about the physical world can be substantially filtered by ideology is a common finding from sociological environment/society research.
University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2016License: CC BY NCFull-Text: https://scholars.unh.edu/soc_facpub/405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0038038516648547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2016License: CC BY NCFull-Text: https://scholars.unh.edu/soc_facpub/405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0038038516648547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United StatesPublisher:SAGE Publications Funded by:NSF | Interactions Among Climat...NSF| Interactions Among Climate, Land Use, Ecosystem Services and SocietyHamilton, Lawrence C.; Wake, Cameron P.; Hartter, Joel N.; Safford, Thomas G.; Puchlopek, Alli J.;Research has led to broad agreement among scientists that anthropogenic climate change is happening now and likely to worsen. In contrast to scientific agreement, US public views remain deeply divided, largely along ideological lines. Science communication has been neutralised in some arenas by intense counter-messaging, but as adverse climate impacts become manifest they might intervene more persuasively in local perceptions. We look for evidence of this occurring with regard to realities and perceptions of flooding in the northeastern US state of New Hampshire. Although precipitation and flood damage have increased, with ample news coverage, most residents do not see a trend. Nor do perceptions about past and future local flooding correlate with regional impacts or vulnerability. Instead, such perceptions follow ideological patterns resembling those of global climate change. That information about the physical world can be substantially filtered by ideology is a common finding from sociological environment/society research.
University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2016License: CC BY NCFull-Text: https://scholars.unh.edu/soc_facpub/405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0038038516648547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2016License: CC BY NCFull-Text: https://scholars.unh.edu/soc_facpub/405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0038038516648547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Chalif, Jacob; Winski, Dominic; Osterberg, Erich; Wake, Cameron; Edwards, Ross; Dibb, Jack; Scheuer, Eric; Saltzman, Eric; Kehrwald, Natalie; Leung, Michelle; Schachterle, Morgan; Jasmann, Jeramy; Hantson, Stijn;doi: 10.18739/a2wh2dg9r
This project intends to use the Mount Denali ice core archive to develop the most comprehensive suite of North Pacific fire and summer climate proxy records since about 2500 years before present. Wildfire is a key component of summer climate in the North Pacific where wildfires are projected to increase with continued summer warming. Studies that combine paleorecords of summer climate and wildfire are therefore critically needed, especially in the North Pacific region where fire recurrence rate and decadal-to-centennial scale climate fluctuations occur over longer time periods than are covered by direct observations. The goal of the proposed research is to improve our understanding of relationships between summertime climate and wildfire activity, focusing especially on the Medieval Climate Anomaly (MCA), when regional temperatures were perhaps as warm as the 20th century. Recent advances now permit the measurement of new fire-related (pyrogenic) compounds in ice cores, enabling the development of a robust fire record capable of rigorous comparison with regional paleoclimate reconstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2wh2dg9r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2wh2dg9r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Chalif, Jacob; Winski, Dominic; Osterberg, Erich; Wake, Cameron; Edwards, Ross; Dibb, Jack; Scheuer, Eric; Saltzman, Eric; Kehrwald, Natalie; Leung, Michelle; Schachterle, Morgan; Jasmann, Jeramy; Hantson, Stijn;doi: 10.18739/a2wh2dg9r
This project intends to use the Mount Denali ice core archive to develop the most comprehensive suite of North Pacific fire and summer climate proxy records since about 2500 years before present. Wildfire is a key component of summer climate in the North Pacific where wildfires are projected to increase with continued summer warming. Studies that combine paleorecords of summer climate and wildfire are therefore critically needed, especially in the North Pacific region where fire recurrence rate and decadal-to-centennial scale climate fluctuations occur over longer time periods than are covered by direct observations. The goal of the proposed research is to improve our understanding of relationships between summertime climate and wildfire activity, focusing especially on the Medieval Climate Anomaly (MCA), when regional temperatures were perhaps as warm as the 20th century. Recent advances now permit the measurement of new fire-related (pyrogenic) compounds in ice cores, enabling the development of a robust fire record capable of rigorous comparison with regional paleoclimate reconstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2wh2dg9r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2wh2dg9r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2009 United StatesPublisher:Emerald Authors: Jennifer Andrews; Cameron P. Wake; Sara M. Cleaves; Brett Pasinella;PurposeThe purpose of this paper is to discuss the recent history of climate action planning at the University of New Hampshire (UNH), a public university with a long history of sustainability action and commitment. Items discussed include a partnership with Clean Air‐Cool Planet (CA‐CP) to produce a greenhouse gas (GHG) inventory tool that adapted national and international inventory methodologies to the unique scale and character of a university community; involvement of administrators, faculty, staff and students in climate action planning, including to meet the requirements of the American College & University Presidents' Climate Commitment (ACUPCC); and the role of climate action planning within a broader institutional goal of integrating sustainability across curricula, operations, research and engagement efforts.Design/methodology/approachBackground and historical information is shared in terms of best practices and lessons learned.FindingsSuccessful climate action planning includes campus‐wide stakeholder involvement, an institution‐wide commitment to sustainability, and careful planning and partnerships that tie into a higher education institution's educational mission and identity and that take into account the culture and sense of place of each institution.Practical implicationsThe paper contains lessons learned and best practices from which other institutions of higher education might learn.Originality/valueUNH, a recognized national leader in sustainability and climate protection, and CA‐CP developed one of the first emissions inventory tools for higher education in the USA. The tool has been adopted by more than 1,000 campuses and was adopted by the ACUPCC as the recommended tool for campuses not already participating in another GHG inventorying program. Instead of recreating the wheel, campuses may be able to learn from UNH and CA‐CP's climate planning experience and history.
International Journa... arrow_drop_down International Journal of Sustainability in Higher EducationArticle . 2009 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefInternational Journal of Sustainability in Higher EducationJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/14676370910972567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Sustainability in Higher EducationArticle . 2009 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefInternational Journal of Sustainability in Higher EducationJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/14676370910972567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United StatesPublisher:Emerald Authors: Jennifer Andrews; Cameron P. Wake; Sara M. Cleaves; Brett Pasinella;PurposeThe purpose of this paper is to discuss the recent history of climate action planning at the University of New Hampshire (UNH), a public university with a long history of sustainability action and commitment. Items discussed include a partnership with Clean Air‐Cool Planet (CA‐CP) to produce a greenhouse gas (GHG) inventory tool that adapted national and international inventory methodologies to the unique scale and character of a university community; involvement of administrators, faculty, staff and students in climate action planning, including to meet the requirements of the American College & University Presidents' Climate Commitment (ACUPCC); and the role of climate action planning within a broader institutional goal of integrating sustainability across curricula, operations, research and engagement efforts.Design/methodology/approachBackground and historical information is shared in terms of best practices and lessons learned.FindingsSuccessful climate action planning includes campus‐wide stakeholder involvement, an institution‐wide commitment to sustainability, and careful planning and partnerships that tie into a higher education institution's educational mission and identity and that take into account the culture and sense of place of each institution.Practical implicationsThe paper contains lessons learned and best practices from which other institutions of higher education might learn.Originality/valueUNH, a recognized national leader in sustainability and climate protection, and CA‐CP developed one of the first emissions inventory tools for higher education in the USA. The tool has been adopted by more than 1,000 campuses and was adopted by the ACUPCC as the recommended tool for campuses not already participating in another GHG inventorying program. Instead of recreating the wheel, campuses may be able to learn from UNH and CA‐CP's climate planning experience and history.
International Journa... arrow_drop_down International Journal of Sustainability in Higher EducationArticle . 2009 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefInternational Journal of Sustainability in Higher EducationJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/14676370910972567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Sustainability in Higher EducationArticle . 2009 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: CrossrefInternational Journal of Sustainability in Higher EducationJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/14676370910972567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Resilience Alliance, Inc. Funded by:NSF | Interactions Among Climat...NSF| Interactions Among Climate, Land Use, Ecosystem Services and SocietyMark E. Borsuk; Wilfred M. Wollheim; Curt Grimm; Madeleine M. Mineau; Nihar R. Samal; Shan Zuidema; Georgia Mavrommati; David A. Lutz; Alexandra M. Thorn; Kevin H. Gardner; Cameron P. Wake; Shannon H. Rogers; Richard B. Howarth;We evaluate the relative desirability of alternative futures for the upper Merrimack River watershed in New Hampshire, USA based on the value of ecosystem services at the end of the 21st century as gauged by its present-day inhabitants. This evaluation is accomplished by integrating land-use and socioeconomic scenarios, downscaled climate projections, biogeophysical simulation models, and the results of a citizen-stakeholder deliberative multicriteria evaluation. We find that although there are some trade-offs between alternative plausible futures, for the most part, it can be expected that future inhabitants of the watershed will be most satisfied if land-use planning in the intervening years prioritizes water supply and flood protection as well as maintenance of existing farmland and forest cover. With respect to climate change, it is expected that future watershed inhabitants will be more negatively affected by the projected loss of snow cover than the anticipated increase in hot summer days. More important than the specific results for the upper Merrimack River watershed, this integrative assessment demonstrates the complex yet ultimately informative potential to link stakeholder engagement with scenario generation, ecosystem models, and multiattribute evaluation for informing regional-scale planning and decision making.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10806-240211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10806-240211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Resilience Alliance, Inc. Funded by:NSF | Interactions Among Climat...NSF| Interactions Among Climate, Land Use, Ecosystem Services and SocietyMark E. Borsuk; Wilfred M. Wollheim; Curt Grimm; Madeleine M. Mineau; Nihar R. Samal; Shan Zuidema; Georgia Mavrommati; David A. Lutz; Alexandra M. Thorn; Kevin H. Gardner; Cameron P. Wake; Shannon H. Rogers; Richard B. Howarth;We evaluate the relative desirability of alternative futures for the upper Merrimack River watershed in New Hampshire, USA based on the value of ecosystem services at the end of the 21st century as gauged by its present-day inhabitants. This evaluation is accomplished by integrating land-use and socioeconomic scenarios, downscaled climate projections, biogeophysical simulation models, and the results of a citizen-stakeholder deliberative multicriteria evaluation. We find that although there are some trade-offs between alternative plausible futures, for the most part, it can be expected that future inhabitants of the watershed will be most satisfied if land-use planning in the intervening years prioritizes water supply and flood protection as well as maintenance of existing farmland and forest cover. With respect to climate change, it is expected that future watershed inhabitants will be more negatively affected by the projected loss of snow cover than the anticipated increase in hot summer days. More important than the specific results for the upper Merrimack River watershed, this integrative assessment demonstrates the complex yet ultimately informative potential to link stakeholder engagement with scenario generation, ecosystem models, and multiattribute evaluation for informing regional-scale planning and decision making.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10806-240211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10806-240211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United StatesPublisher:Springer Science and Business Media LLC Frumhoff, Peter C; McCarthy, James J; Melillo, Jerry M; Moser, Susanne C; Wuebbles, Donald; Wake, Cameron P; Spanger-Siegfried, Erika;The papers in this Special Issue are the primary technical underpinnings for the Northeast Climate Impacts Assessment (NECIA), an integrated regional-scale assessment of projected climate change, impacts and options for mitigation and adaptation across the US Northeast. The consequences of future pathways of greenhouse gas emissions on projected climate and impacts across climate-sensitive sectors is assessed by using downscaled projections from three global climate models under both higher (Alfi) and lower (B1) emissions scenarios. The findings illustrate that near-term reductions in emissions can greatly reduce the extent and severity of regionally important impacts on natural and managed ecosystems and public health in the latter half of this century, and increase the feasibility that those impacts which are now unavoidable can be successfully managed through adaptation.
Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9138-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9138-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United StatesPublisher:Springer Science and Business Media LLC Frumhoff, Peter C; McCarthy, James J; Melillo, Jerry M; Moser, Susanne C; Wuebbles, Donald; Wake, Cameron P; Spanger-Siegfried, Erika;The papers in this Special Issue are the primary technical underpinnings for the Northeast Climate Impacts Assessment (NECIA), an integrated regional-scale assessment of projected climate change, impacts and options for mitigation and adaptation across the US Northeast. The consequences of future pathways of greenhouse gas emissions on projected climate and impacts across climate-sensitive sectors is assessed by using downscaled projections from three global climate models under both higher (Alfi) and lower (B1) emissions scenarios. The findings illustrate that near-term reductions in emissions can greatly reduce the extent and severity of regionally important impacts on natural and managed ecosystems and public health in the latter half of this century, and increase the feasibility that those impacts which are now unavoidable can be successfully managed through adaptation.
Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9138-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9138-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Wiley William H. McDowell; Alexandra R. Contosta; Cameron P. Wake; Mary R. Albert; A. C. Adolph; Denise Burchsted; Elizabeth A. Burakowski; Elizabeth A. Burakowski; Wilfred M. Wollheim; David Guerra; Mark B. Green; Jack E. Dibb; Rachel J. Whitaker; Mary E. Martin; Michael R. Routhier;doi: 10.1111/gcb.13517
pmid: 27808458
AbstractClimate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire,USA, that concurrently monitored climate, snow, soils, and streams over a three‐year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero‐length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter‐to‐spring transition and throughout the rest of the year.
University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2017License: CC BY NC NDFull-Text: https://scholars.unh.edu/ersc/43Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2017License: CC BY NC NDFull-Text: https://scholars.unh.edu/ersc/43Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Wiley William H. McDowell; Alexandra R. Contosta; Cameron P. Wake; Mary R. Albert; A. C. Adolph; Denise Burchsted; Elizabeth A. Burakowski; Elizabeth A. Burakowski; Wilfred M. Wollheim; David Guerra; Mark B. Green; Jack E. Dibb; Rachel J. Whitaker; Mary E. Martin; Michael R. Routhier;doi: 10.1111/gcb.13517
pmid: 27808458
AbstractClimate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire,USA, that concurrently monitored climate, snow, soils, and streams over a three‐year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero‐length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter‐to‐spring transition and throughout the rest of the year.
University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2017License: CC BY NC NDFull-Text: https://scholars.unh.edu/ersc/43Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2017License: CC BY NC NDFull-Text: https://scholars.unh.edu/ersc/43Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United StatesPublisher:Springer Science and Business Media LLC Hayhoe, Katharine; Wake, Cameron P; Anderson, Bruce T.; Liang, Xin-Zhong; Maurer, Edwin; Zhu, Jinhong; Bradbury, James A; DeGaetano, Art; Stoner, Anne Marie; Wuebbles, Donald;Climate projections at relevant temporal and spatial scales are essential to assess potential future climate change impacts on climatologically diverse regions such as the northeast United States. Here, we show how both statistical and dynamical downscaling methods applied to relatively coarse-scale atmosphere-ocean general circulation model output are able to improve simulation of spatial and temporal variability in temperature and precipitation across the region. We then develop high-resolution projections of future climate change across the northeast USA, using IPCC SRES emission scenarios combined with these downscaling methods. The projections show increases in temperature that are larger at higher latitudes and inland, as well as the potential for changing precipitation patterns, particularly along the coast. While the absolute magnitude of change expected over the coming century depends on the sensitivity of the climate system to human forcing, significantly higher increases in temperature and in winter precipitation are expected under a higher as compared to lower scenario of future emissions from human activities.
Santa Clara Universi... arrow_drop_down Santa Clara University: Scholar CommonsArticle . 2008Full-Text: https://scholarcommons.scu.edu/ceng/49Data sources: Bielefeld Academic Search Engine (BASE)Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9133-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 228 citations 228 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Santa Clara Universi... arrow_drop_down Santa Clara University: Scholar CommonsArticle . 2008Full-Text: https://scholarcommons.scu.edu/ceng/49Data sources: Bielefeld Academic Search Engine (BASE)Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9133-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United StatesPublisher:Springer Science and Business Media LLC Hayhoe, Katharine; Wake, Cameron P; Anderson, Bruce T.; Liang, Xin-Zhong; Maurer, Edwin; Zhu, Jinhong; Bradbury, James A; DeGaetano, Art; Stoner, Anne Marie; Wuebbles, Donald;Climate projections at relevant temporal and spatial scales are essential to assess potential future climate change impacts on climatologically diverse regions such as the northeast United States. Here, we show how both statistical and dynamical downscaling methods applied to relatively coarse-scale atmosphere-ocean general circulation model output are able to improve simulation of spatial and temporal variability in temperature and precipitation across the region. We then develop high-resolution projections of future climate change across the northeast USA, using IPCC SRES emission scenarios combined with these downscaling methods. The projections show increases in temperature that are larger at higher latitudes and inland, as well as the potential for changing precipitation patterns, particularly along the coast. While the absolute magnitude of change expected over the coming century depends on the sensitivity of the climate system to human forcing, significantly higher increases in temperature and in winter precipitation are expected under a higher as compared to lower scenario of future emissions from human activities.
Santa Clara Universi... arrow_drop_down Santa Clara University: Scholar CommonsArticle . 2008Full-Text: https://scholarcommons.scu.edu/ceng/49Data sources: Bielefeld Academic Search Engine (BASE)Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9133-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 228 citations 228 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Santa Clara Universi... arrow_drop_down Santa Clara University: Scholar CommonsArticle . 2008Full-Text: https://scholarcommons.scu.edu/ceng/49Data sources: Bielefeld Academic Search Engine (BASE)Mitigation and Adaptation Strategies for Global ChangeArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic GraphUniversity of New Hampshire: Scholars RepositoryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-007-9133-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Chalif, Jacob; Winski, Dominic; Osterberg, Erich; Wake, Cameron; Edwards, Ross; Dibb, Jack; Scheuer, Eric; Saltzman, Eric; Kehrwald, Natalie; Hantson, Stijn;This project intends to use the Mount Denali ice core archive to develop the most comprehensive suite of North Pacific fire and summer climate proxy records since about 2500 years before present. Wildfire is a key component of summer climate in the North Pacific where wildfires are projected to increase with continued summer warming. Studies that combine paleorecords of summer climate and wildfire are therefore critically needed, especially in the North Pacific region where fire recurrence rate and decadal-to-centennial scale climate fluctuations occur over longer time periods than are covered by direct observations. The goal of the proposed research is to improve our understanding of relationships between summertime climate and wildfire activity, focusing especially on the Medieval Climate Anomaly (MCA), when regional temperatures were perhaps as warm as the 20th century. Recent advances now permit the measurement of new fire-related (pyrogenic) compounds in ice cores, enabling the development of a robust fire record capable of rigorous comparison with regional paleoclimate reconstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2ks6j63d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2ks6j63d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Chalif, Jacob; Winski, Dominic; Osterberg, Erich; Wake, Cameron; Edwards, Ross; Dibb, Jack; Scheuer, Eric; Saltzman, Eric; Kehrwald, Natalie; Hantson, Stijn;This project intends to use the Mount Denali ice core archive to develop the most comprehensive suite of North Pacific fire and summer climate proxy records since about 2500 years before present. Wildfire is a key component of summer climate in the North Pacific where wildfires are projected to increase with continued summer warming. Studies that combine paleorecords of summer climate and wildfire are therefore critically needed, especially in the North Pacific region where fire recurrence rate and decadal-to-centennial scale climate fluctuations occur over longer time periods than are covered by direct observations. The goal of the proposed research is to improve our understanding of relationships between summertime climate and wildfire activity, focusing especially on the Medieval Climate Anomaly (MCA), when regional temperatures were perhaps as warm as the 20th century. Recent advances now permit the measurement of new fire-related (pyrogenic) compounds in ice cores, enabling the development of a robust fire record capable of rigorous comparison with regional paleoclimate reconstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2ks6j63d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2ks6j63d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Chalif, Jacob; Winski, Dominic; Osterberg, Erich; Wake, Cameron; Edwards, Ross; Dibb, Jack; Scheuer, Eric; Saltzman, Eric; Kerhwald, Natalie; Hantson, Stijn;doi: 10.18739/a2q52ff5s
This project intends to use the Mount Denali ice core archive to develop the most comprehensive suite of North Pacific fire and summer climate proxy records since about 2500 years before present. Wildfire is a key component of summer climate in the North Pacific where wildfires are projected to increase with continued summer warming. Studies that combine paleorecords of summer climate and wildfire are therefore critically needed, especially in the North Pacific region where fire recurrence rate and decadal-to-centennial scale climate fluctuations occur over longer time periods than are covered by direct observations. The goal of the proposed research is to improve our understanding of relationships between summertime climate and wildfire activity, focusing especially on the Medieval Climate Anomaly (MCA), when regional temperatures were perhaps as warm as the 20th century. Recent advances now permit the measurement of new fire-related (pyrogenic) compounds in ice cores, enabling the development of a robust fire record capable of rigorous comparison with regional paleoclimate reconstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2q52ff5s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2q52ff5s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Chalif, Jacob; Winski, Dominic; Osterberg, Erich; Wake, Cameron; Edwards, Ross; Dibb, Jack; Scheuer, Eric; Saltzman, Eric; Kerhwald, Natalie; Hantson, Stijn;doi: 10.18739/a2q52ff5s
This project intends to use the Mount Denali ice core archive to develop the most comprehensive suite of North Pacific fire and summer climate proxy records since about 2500 years before present. Wildfire is a key component of summer climate in the North Pacific where wildfires are projected to increase with continued summer warming. Studies that combine paleorecords of summer climate and wildfire are therefore critically needed, especially in the North Pacific region where fire recurrence rate and decadal-to-centennial scale climate fluctuations occur over longer time periods than are covered by direct observations. The goal of the proposed research is to improve our understanding of relationships between summertime climate and wildfire activity, focusing especially on the Medieval Climate Anomaly (MCA), when regional temperatures were perhaps as warm as the 20th century. Recent advances now permit the measurement of new fire-related (pyrogenic) compounds in ice cores, enabling the development of a robust fire record capable of rigorous comparison with regional paleoclimate reconstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2q52ff5s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2q52ff5s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:The Arctic Institute of North America Zdanowicz, Christian; Fisher, David; Bourgeois, Jocelyne; Demuth, Mike; Zheng, James; Mayewski, Paul A; Kreutz, K; Osterberg, Erich; Yalcin, Kaplan; Wake, Cameron P; Steig, Eric J; Froese, Duane; Goto-Azuma, Kumiko;doi: 10.14430/arctic4352
A major achievement in research supported by the Kluane Lake Research Station was the recovery, in 2001 – 02, of a suite of cores from the icefields of the central St. Elias Mountains, Yukon, by teams of researchers from Canada, the United States, and Japan. This project led to the development of parallel, long (103 – 104 year) ice-core records of climate and atmospheric change over an altitudinal range of more than 2 km, from the Eclipse Icefield (3017 m) to the ice-covered plateau of Mt. Logan (5340 m). These efforts built on earlier work recovering single ice cores in this region. Comparison of these records has allowed for variations in climate and atmospheric composition to be linked with changes in the vertical structure and dynamics of the North Pacific atmosphere, providing a unique perspective on these changes over the Holocene. Owing to their privileged location, cores from the St. Elias Icefields also contain a remarkably detailed record of aerosols from various sources around or across the North Pacific. In this paper we review major scientific findings from the study of St. Elias Mountain ice cores, focusing on five main themes: (1) The record of stable water isotopes (δ18O, δD), which has unique characteristics that differ from those of Greenland, other Arctic ice cores, and even among sites in the St. Elias; (2) the snow accumulation history; (3) the record of pollen, biomass burning aerosol, and desert dust deposition; (4) the record of long-range air pollutant deposition (sulphate and lead); and (5) the record of paleo-volcanism. Our discussion draws on studies published since 2000, but based on older ice cores from the St. Elias Mountains obtained in 1980 and 1996.
ARCTIC arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14430/arctic4352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ARCTIC arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14430/arctic4352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:The Arctic Institute of North America Zdanowicz, Christian; Fisher, David; Bourgeois, Jocelyne; Demuth, Mike; Zheng, James; Mayewski, Paul A; Kreutz, K; Osterberg, Erich; Yalcin, Kaplan; Wake, Cameron P; Steig, Eric J; Froese, Duane; Goto-Azuma, Kumiko;doi: 10.14430/arctic4352
A major achievement in research supported by the Kluane Lake Research Station was the recovery, in 2001 – 02, of a suite of cores from the icefields of the central St. Elias Mountains, Yukon, by teams of researchers from Canada, the United States, and Japan. This project led to the development of parallel, long (103 – 104 year) ice-core records of climate and atmospheric change over an altitudinal range of more than 2 km, from the Eclipse Icefield (3017 m) to the ice-covered plateau of Mt. Logan (5340 m). These efforts built on earlier work recovering single ice cores in this region. Comparison of these records has allowed for variations in climate and atmospheric composition to be linked with changes in the vertical structure and dynamics of the North Pacific atmosphere, providing a unique perspective on these changes over the Holocene. Owing to their privileged location, cores from the St. Elias Icefields also contain a remarkably detailed record of aerosols from various sources around or across the North Pacific. In this paper we review major scientific findings from the study of St. Elias Mountain ice cores, focusing on five main themes: (1) The record of stable water isotopes (δ18O, δD), which has unique characteristics that differ from those of Greenland, other Arctic ice cores, and even among sites in the St. Elias; (2) the snow accumulation history; (3) the record of pollen, biomass burning aerosol, and desert dust deposition; (4) the record of long-range air pollutant deposition (sulphate and lead); and (5) the record of paleo-volcanism. Our discussion draws on studies published since 2000, but based on older ice cores from the St. Elias Mountains obtained in 1980 and 1996.
ARCTIC arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14430/arctic4352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ARCTIC arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14430/arctic4352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United StatesPublisher:SAGE Publications Funded by:NSF | Interactions Among Climat...NSF| Interactions Among Climate, Land Use, Ecosystem Services and SocietyHamilton, Lawrence C.; Wake, Cameron P.; Hartter, Joel N.; Safford, Thomas G.; Puchlopek, Alli J.;Research has led to broad agreement among scientists that anthropogenic climate change is happening now and likely to worsen. In contrast to scientific agreement, US public views remain deeply divided, largely along ideological lines. Science communication has been neutralised in some arenas by intense counter-messaging, but as adverse climate impacts become manifest they might intervene more persuasively in local perceptions. We look for evidence of this occurring with regard to realities and perceptions of flooding in the northeastern US state of New Hampshire. Although precipitation and flood damage have increased, with ample news coverage, most residents do not see a trend. Nor do perceptions about past and future local flooding correlate with regional impacts or vulnerability. Instead, such perceptions follow ideological patterns resembling those of global climate change. That information about the physical world can be substantially filtered by ideology is a common finding from sociological environment/society research.
University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2016License: CC BY NCFull-Text: https://scholars.unh.edu/soc_facpub/405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0038038516648547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2016License: CC BY NCFull-Text: https://scholars.unh.edu/soc_facpub/405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0038038516648547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United StatesPublisher:SAGE Publications Funded by:NSF | Interactions Among Climat...NSF| Interactions Among Climate, Land Use, Ecosystem Services and SocietyHamilton, Lawrence C.; Wake, Cameron P.; Hartter, Joel N.; Safford, Thomas G.; Puchlopek, Alli J.;Research has led to broad agreement among scientists that anthropogenic climate change is happening now and likely to worsen. In contrast to scientific agreement, US public views remain deeply divided, largely along ideological lines. Science communication has been neutralised in some arenas by intense counter-messaging, but as adverse climate impacts become manifest they might intervene more persuasively in local perceptions. We look for evidence of this occurring with regard to realities and perceptions of flooding in the northeastern US state of New Hampshire. Although precipitation and flood damage have increased, with ample news coverage, most residents do not see a trend. Nor do perceptions about past and future local flooding correlate with regional impacts or vulnerability. Instead, such perceptions follow ideological patterns resembling those of global climate change. That information about the physical world can be substantially filtered by ideology is a common finding from sociological environment/society research.
University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2016License: CC BY NCFull-Text: https://scholars.unh.edu/soc_facpub/405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0038038516648547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2016License: CC BY NCFull-Text: https://scholars.unh.edu/soc_facpub/405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0038038516648547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Chalif, Jacob; Winski, Dominic; Osterberg, Erich; Wake, Cameron; Edwards, Ross; Dibb, Jack; Scheuer, Eric; Saltzman, Eric; Kehrwald, Natalie; Leung, Michelle; Schachterle, Morgan; Jasmann, Jeramy; Hantson, Stijn;doi: 10.18739/a2wh2dg9r
This project intends to use the Mount Denali ice core archive to develop the most comprehensive suite of North Pacific fire and summer climate proxy records since about 2500 years before present. Wildfire is a key component of summer climate in the North Pacific where wildfires are projected to increase with continued summer warming. Studies that combine paleorecords of summer climate and wildfire are therefore critically needed, especially in the North Pacific region where fire recurrence rate and decadal-to-centennial scale climate fluctuations occur over longer time periods than are covered by direct observations. The goal of the proposed research is to improve our understanding of relationships between summertime climate and wildfire activity, focusing especially on the Medieval Climate Anomaly (MCA), when regional temperatures were perhaps as warm as the 20th century. Recent advances now permit the measurement of new fire-related (pyrogenic) compounds in ice cores, enabling the development of a robust fire record capable of rigorous comparison with regional paleoclimate reconstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2wh2dg9r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2wh2dg9r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:NSF Arctic Data Center Chalif, Jacob; Winski, Dominic; Osterberg, Erich; Wake, Cameron; Edwards, Ross; Dibb, Jack; Scheuer, Eric; Saltzman, Eric; Kehrwald, Natalie; Leung, Michelle; Schachterle, Morgan; Jasmann, Jeramy; Hantson, Stijn;doi: 10.18739/a2wh2dg9r
This project intends to use the Mount Denali ice core archive to develop the most comprehensive suite of North Pacific fire and summer climate proxy records since about 2500 years before present. Wildfire is a key component of summer climate in the North Pacific where wildfires are projected to increase with continued summer warming. Studies that combine paleorecords of summer climate and wildfire are therefore critically needed, especially in the North Pacific region where fire recurrence rate and decadal-to-centennial scale climate fluctuations occur over longer time periods than are covered by direct observations. The goal of the proposed research is to improve our understanding of relationships between summertime climate and wildfire activity, focusing especially on the Medieval Climate Anomaly (MCA), when regional temperatures were perhaps as warm as the 20th century. Recent advances now permit the measurement of new fire-related (pyrogenic) compounds in ice cores, enabling the development of a robust fire record capable of rigorous comparison with regional paleoclimate reconstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2wh2dg9r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2wh2dg9r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu