- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: T. Renugadevi; K. Geetha; K. Muthukumar; Zong Woo Geem;doi: 10.3390/app10072323
Drastic variations in high-performance computing workloads lead to the commencement of large number of datacenters. To revolutionize themselves as green datacenters, these data centers are assured to reduce their energy consumption without compromising the performance. The energy consumption of the processor is considered as an important metric for power reduction in servers as it accounts to 60% of the total power consumption. In this research work, a power-aware algorithm (PA) and an adaptive harmony search algorithm (AHSA) are proposed for the placement of reserved virtual machines in the datacenters to reduce the power consumption of servers. Modification of the standard harmony search algorithm is inevitable to suit this specific problem with varying global search space in each allocation interval. A task distribution algorithm is also proposed to distribute and balance the workload among the servers to evade over-utilization of servers which is unique of its kind against traditional virtual machine consolidation approaches that intend to restrain the number of powered on servers to the minimum as possible. Different policies for overload host selection and virtual machine selection are discussed for load balancing. The observations endorse that the AHSA outperforms, and yields better results towards the objective than, the PA algorithm and the existing counterparts.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/7/2323/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10072323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/7/2323/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10072323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: T. Renugadevi; K. Geetha; K. Muthukumar; Zong Woo Geem;doi: 10.3390/su12166383
Cloud data center’s total operating cost is conquered by electricity cost and carbon tax incurred due to energy consumption from the grid and its associated carbon emission. In this work, we consider geo-distributed sustainable datacenter’s with varying on-site green energy generation, electricity prices, carbon intensity and carbon tax. The objective function is devised to reduce the operating cost including electricity cost and carbon cost incurred on the power consumption of servers and cooling devices. We propose renewable-aware algorithms to schedule the workload to the data centers with an aim to maximize the green energy usage. Due to the uncertainty and time variant nature of renewable energy availability, an investigation is performed to identify the impact of carbon footprint, carbon tax and electricity cost in data center selection on total operating cost reduction. In addition, on-demand dynamic optimal frequency-based load distribution within the cluster nodes is performed to eliminate hot spots due to high processor utilization. The work suggests optimal virtual machine placement decision to maximize green energy usage with reduced operating cost and carbon emission.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/16/6383/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12166383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/16/6383/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12166383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Muthukumar Kandasamy; Renugadevi Thangavel; Thamaraiselvi Arumugam; Jayachandran Jayaram; +2 AuthorsMuthukumar Kandasamy; Renugadevi Thangavel; Thamaraiselvi Arumugam; Jayachandran Jayaram; Wook-Won Kim; Zong Woo Geem;doi: 10.3390/su141811480
In this work, an efficient hybrid optimization approach entitled harmony search and particle artificial bee colony algorithm is proposed to deal with the distribution network reconfiguration and solar photovoltaic-based distributed generation and shunt capacitor deployment in power distribution networks to improve the operating performance of power distribution networks. The proposed hybrid algorithm combines the exploration and exploitation capability of both algorithms to achieve optimal results. The optimization problem is formalized which includes distributed generation and shunt capacitor locations, open/close state of switches as discrete decision variables, and the optimum operating point of compensation devices as continuous variables. An efficient spanning tree approach is utilized to track the optimal topology of the network. The validity of the proposed hybrid algorithm in handling the optimal planning problem of the distribution network is assured through eight different operating scenarios at three discrete load levels. The efficiency of the proposed performance enhancement approaches was validated using 69 node and 118 node distribution networks. The obtained results are compared against similar techniques presented in the literature.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Muthukumar Kandasamy; Renugadevi Thangavel; Thamaraiselvi Arumugam; Sureshkumar Kumaravel; +3 AuthorsMuthukumar Kandasamy; Renugadevi Thangavel; Thamaraiselvi Arumugam; Sureshkumar Kumaravel; Sakthivel Aruchamy; Wook-Won Kim; Zong Woo Geem;The article focuses on the optimal planning of distribution static synchronous compensator (DSTATCOM) and distributed generation (DG) to minimize power losses, and simultaneously enhance the voltage profile, and voltage stability at various nodes of the Radial Power Distribution Networks (RPDN). The study involves combinational choices in the use of the DSTATCOM and DG and it relies on heuristic algorithms namely the Enhanced artificial bee colony algorithm (EABC) which has been formulated based on a modification in the searching strategy of the traditional artificial bee colony algorithm (ABC) by integrating the particle swarm optimization (PSO). The proposed optimization model considers the multiobjective function, including the power loss reduction, branch current capacity limit violation, and node voltage deviation. In the proposed approach, the optimal rating of DG and DSTATCOM is estimated under various load steps by using the EABC algorithm. Two different test cases namely base case, and combined installation of DG and DSTATCOM units were considered to analyze the distribution network performance at different load factors. The power loss minimization, voltage profile, and voltage stability improvement of the network before and after the allocation of DG unit and DSTATCOM is depicted. The study examines the effectiveness of the proposed method through a simulation run on 33-node balanced and IEEE 13-node unbalanced RPDN under time varying load demand. Simulation results reveal that the combined installation of DG unit along with DSTATCOM at a suitable location in 33-node and 13-node distribution networks can minimize the power loss by 62% and 43% respectively under the time varying load demand considered along with significant improvement in voltage profile and voltage stability of the network.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.03.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.03.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:IOP Publishing M. Venkatesan; T Renugadevi; D Hari Prasanth; Appili Yaswanth; K Muthukumar;Abstract Data centers are large-scale data storage and processing systems. It is made up of a number of servers that must be capable of handling large amount of data. As a result, data centers generate a significant quantity of heat, which must be cooled and kept at an optimal temperature to avoid overheating. To address this problem, thermal analysis of the data center is carried out using numerical methods. The CFD model consists of a micro data center, where conjugate heat transfer effects are studied. A micro data center consists of servers aligned with air gaps alternatively and cooling air is passed between the air gaps to remove heat. In the present work, the design of data center rack is made in such a way that the cold air is in close proximity to servers. The temperature and airflow in the data center are estimated using the model. The air gap is optimally designed for the cooling unit. Temperature distribution of various load configurations is studied. The objective of the study is to find a favorable loading configuration of the micro data center for various loads and effectiveness of distribution of load among the servers.
IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/850/1/012018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/850/1/012018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: T. Renugadevi; K. Geetha; K. Muthukumar; Zong Woo Geem;doi: 10.3390/app10072323
Drastic variations in high-performance computing workloads lead to the commencement of large number of datacenters. To revolutionize themselves as green datacenters, these data centers are assured to reduce their energy consumption without compromising the performance. The energy consumption of the processor is considered as an important metric for power reduction in servers as it accounts to 60% of the total power consumption. In this research work, a power-aware algorithm (PA) and an adaptive harmony search algorithm (AHSA) are proposed for the placement of reserved virtual machines in the datacenters to reduce the power consumption of servers. Modification of the standard harmony search algorithm is inevitable to suit this specific problem with varying global search space in each allocation interval. A task distribution algorithm is also proposed to distribute and balance the workload among the servers to evade over-utilization of servers which is unique of its kind against traditional virtual machine consolidation approaches that intend to restrain the number of powered on servers to the minimum as possible. Different policies for overload host selection and virtual machine selection are discussed for load balancing. The observations endorse that the AHSA outperforms, and yields better results towards the objective than, the PA algorithm and the existing counterparts.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/7/2323/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10072323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/7/2323/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10072323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: T. Renugadevi; K. Geetha; K. Muthukumar; Zong Woo Geem;doi: 10.3390/su12166383
Cloud data center’s total operating cost is conquered by electricity cost and carbon tax incurred due to energy consumption from the grid and its associated carbon emission. In this work, we consider geo-distributed sustainable datacenter’s with varying on-site green energy generation, electricity prices, carbon intensity and carbon tax. The objective function is devised to reduce the operating cost including electricity cost and carbon cost incurred on the power consumption of servers and cooling devices. We propose renewable-aware algorithms to schedule the workload to the data centers with an aim to maximize the green energy usage. Due to the uncertainty and time variant nature of renewable energy availability, an investigation is performed to identify the impact of carbon footprint, carbon tax and electricity cost in data center selection on total operating cost reduction. In addition, on-demand dynamic optimal frequency-based load distribution within the cluster nodes is performed to eliminate hot spots due to high processor utilization. The work suggests optimal virtual machine placement decision to maximize green energy usage with reduced operating cost and carbon emission.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/16/6383/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12166383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/16/6383/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12166383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Muthukumar Kandasamy; Renugadevi Thangavel; Thamaraiselvi Arumugam; Jayachandran Jayaram; +2 AuthorsMuthukumar Kandasamy; Renugadevi Thangavel; Thamaraiselvi Arumugam; Jayachandran Jayaram; Wook-Won Kim; Zong Woo Geem;doi: 10.3390/su141811480
In this work, an efficient hybrid optimization approach entitled harmony search and particle artificial bee colony algorithm is proposed to deal with the distribution network reconfiguration and solar photovoltaic-based distributed generation and shunt capacitor deployment in power distribution networks to improve the operating performance of power distribution networks. The proposed hybrid algorithm combines the exploration and exploitation capability of both algorithms to achieve optimal results. The optimization problem is formalized which includes distributed generation and shunt capacitor locations, open/close state of switches as discrete decision variables, and the optimum operating point of compensation devices as continuous variables. An efficient spanning tree approach is utilized to track the optimal topology of the network. The validity of the proposed hybrid algorithm in handling the optimal planning problem of the distribution network is assured through eight different operating scenarios at three discrete load levels. The efficiency of the proposed performance enhancement approaches was validated using 69 node and 118 node distribution networks. The obtained results are compared against similar techniques presented in the literature.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Muthukumar Kandasamy; Renugadevi Thangavel; Thamaraiselvi Arumugam; Sureshkumar Kumaravel; +3 AuthorsMuthukumar Kandasamy; Renugadevi Thangavel; Thamaraiselvi Arumugam; Sureshkumar Kumaravel; Sakthivel Aruchamy; Wook-Won Kim; Zong Woo Geem;The article focuses on the optimal planning of distribution static synchronous compensator (DSTATCOM) and distributed generation (DG) to minimize power losses, and simultaneously enhance the voltage profile, and voltage stability at various nodes of the Radial Power Distribution Networks (RPDN). The study involves combinational choices in the use of the DSTATCOM and DG and it relies on heuristic algorithms namely the Enhanced artificial bee colony algorithm (EABC) which has been formulated based on a modification in the searching strategy of the traditional artificial bee colony algorithm (ABC) by integrating the particle swarm optimization (PSO). The proposed optimization model considers the multiobjective function, including the power loss reduction, branch current capacity limit violation, and node voltage deviation. In the proposed approach, the optimal rating of DG and DSTATCOM is estimated under various load steps by using the EABC algorithm. Two different test cases namely base case, and combined installation of DG and DSTATCOM units were considered to analyze the distribution network performance at different load factors. The power loss minimization, voltage profile, and voltage stability improvement of the network before and after the allocation of DG unit and DSTATCOM is depicted. The study examines the effectiveness of the proposed method through a simulation run on 33-node balanced and IEEE 13-node unbalanced RPDN under time varying load demand. Simulation results reveal that the combined installation of DG unit along with DSTATCOM at a suitable location in 33-node and 13-node distribution networks can minimize the power loss by 62% and 43% respectively under the time varying load demand considered along with significant improvement in voltage profile and voltage stability of the network.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.03.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.03.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:IOP Publishing M. Venkatesan; T Renugadevi; D Hari Prasanth; Appili Yaswanth; K Muthukumar;Abstract Data centers are large-scale data storage and processing systems. It is made up of a number of servers that must be capable of handling large amount of data. As a result, data centers generate a significant quantity of heat, which must be cooled and kept at an optimal temperature to avoid overheating. To address this problem, thermal analysis of the data center is carried out using numerical methods. The CFD model consists of a micro data center, where conjugate heat transfer effects are studied. A micro data center consists of servers aligned with air gaps alternatively and cooling air is passed between the air gaps to remove heat. In the present work, the design of data center rack is made in such a way that the cold air is in close proximity to servers. The temperature and airflow in the data center are estimated using the model. The air gap is optimally designed for the cooling unit. Temperature distribution of various load configurations is studied. The objective of the study is to find a favorable loading configuration of the micro data center for various loads and effectiveness of distribution of load among the servers.
IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/850/1/012018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/850/1/012018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu