- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Conference object 2021 ItalyAuthors: Maria Rosaria Plutino;handle: 20.500.14243/449711
Nanotechnologies are recently turning towards the development of hybrid nanomaterials and functional nanocomposites, characterized by the presence of functional nanometric components or nanofillers dispersed in a polymeric matrix, thus resulting in increased properties compared to those featured by both starting component. The innovative idea consists in the design of an advanced nanohybrid or nanocomposite material, suitable as surface coating or as it is for different sustainable applications, thanks to their improved properties, such as: 1)antivegetative or antibacterial; 2)flame-retardant; 3)drug-release; 4)sensing; 5)mechanical resistance; 6)absorption and degradation of pollutants . In particular, the inclusion of sensing functions into fabric textiles is a powerful approach towards the development of the so-called, "smart textiles", allowing the development of wearable sensors, i.e. new systems still characterized by main textiles features such as flexibility, biocompatibility, comfort, together with mechanical resistance, able to react and adapt to specific external environment stimuli from their surroundings. This work will show the design, synthesis and characterization of hybrid nanomaterials and multifunctional smart and innovative nanocomposites, based on functional nanoparticles and nanofillers, dispersed in polymeric matrices and/or in combination with appropriate dopants, used as they are or as coatings of different substrates, for applications in optoelectronics, sensors, catalysis, cultural heritage, environmental remediation and biomedicine, construction, textiles and naval sectors. The key-step for sustainability comes from the setting of completely green and eco-friendly synthesis protocols, starting from natural substances or wastes, which lead to the obtainment of functional materials that can also be recycled.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2b77e73bd5ec0e1c7ea839017606a1ab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2b77e73bd5ec0e1c7ea839017606a1ab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 ItalyPublisher:MDPI AG Tarek AbouElmaaty; Shereen Abdeldayem; Shaimaa Ramadan; Khaled Sayed-Ahmed; Maria Plutino;In this study, we developed a new approach for depositing selenium nanoparticles (SeNPs) into polypropylene (PP) fabrics via a one-step process under hydrothermal conditions by using an IR-dyeing machine to incorporate several functionalities, mainly coloration, antibacterial activity and ultraviolet (UV) protection. The formation, size distribution, and dispersion of the SeNPs were determined using X-ray diffraction (XRD), ultraviolet-visible (UV/Vis), transmission electron microscopy (TEM) and the color strength, fastness, antibacterial properties, and UV protection of the treated fabrics were also explored. The UV-Vis spectra and TEM analysis confirmed the synthesis of spherical well-dispersed SeNPs and the XRD analysis showed the successful deposition of SeNPs into PP fabrics. The obtained results demonstrate that the SeNPs-PP fabrics is accompanied by a noticeable enhancement in measurements of color strength, fastness, and UV-protection factor (UPF), as well as excellent antibacterial activity. Viability studies showed that SeNPs-PP fabrics are non-toxic against wi-38cell line. In addition, the treated SeNPs-PP fabrics showed an increase in conductivity. The obtained multifunctional fabrics are promising for many industrial applications such as the new generation of curtains, medical fabrics, and even automotive interior parts.
Polymers arrow_drop_down PolymersOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4360/13/15/2483/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym13152483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Polymers arrow_drop_down PolymersOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4360/13/15/2483/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym13152483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Patent 2023 ItalyAuthors: Maria Rosaria Plutino; Simone Cappello;handle: 20.500.14243/449708
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::86ecefbe91123d8c55a24c62e4f6493f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::86ecefbe91123d8c55a24c62e4f6493f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 ItalyAuthors: Maria Rosaria Plutino;handle: 20.500.14243/449714
Recently, nanotechnologies have shifted toward the development of hybrid nanomaterials and functional nanocomposites, which are distinguished by the presence of functional nanometric components or nanofillers dispersed in a polymeric matrix, resulting in increased properties compared to those of either starting component. The original concept is to create an enhanced nanohybrid or nanocomposite material that is appropriate as a surface coating or for other sustainable applications due to increased qualities such as: 1) antifouling or antibacterial; 2) flame-retardant; 3) drug release; 4) sensing; 5) mechanical resistance; and 6) pollutant absorption and degradation [1]. In particular, the incorporation of sensing functions into fabric textiles is a powerful approach toward the development of so-called "smart textiles", enabling the development of wearable sensors, i.e. novel systems characterized by main textile characteristics such as flexibility, biocompatibility, comfort, and mechanical resistance, capable of reacting and adapting to specific external stimuli from their surroundings [2]. This work will show in details the design, synthesis, and characterization of hybrid nanomaterials and multifunctional, innovative and smart nanocomposites based on functional nanoparticles and nanofillers dispersed in polymeric matrices and/or in combination with suitable dopants, used as-is or as coatings of various substrates, for uses in opto-electronic devices, sensors, catalytic processes, cultural heritage, environmental remediation, construction, blue growth, biomedicine and textiles. The setting up of totally green and eco-friendly synthesis procedures based on natural components or wastes to produce functional products that can also be recycled, will be underlined as a crucial step toward sustainability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::bcab802ec3e0df6377b9e0a9918f53a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::bcab802ec3e0df6377b9e0a9918f53a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Authors: Silvia Sfameni; Giulia Rando; Maria Rosaria Plutino;doi: 10.3390/ijms24065472
pmid: 36982545
pmc: PMC10049648
handle: 20.500.14243/449701 , 11570/3258927
doi: 10.3390/ijms24065472
pmid: 36982545
pmc: PMC10049648
handle: 20.500.14243/449701 , 11570/3258927
To meet modern society’s requirements for sustainability and environmental protection, innovative and smart surface coatings are continually being developed to improve or impart surface functional qualities and protective features. These needs regard numerous different sectors, such as cultural heritage, building, naval, automotive, environmental remediation and textiles. In this regard, researchers and nanotechnology are therefore mostly devoted to the development of new and smart nanostructured finishings and coatings featuring different implemented properties, such as anti-vegetative or antibacterial, hydrophobic, anti-stain, fire retardant, controlled release of drugs, detection of molecules and mechanical resistance. A variety of chemical synthesis techniques are usually employed to obtain novel nanostructured materials based on the use of an appropriate polymeric matrix in combination with either functional doping molecules or blended polymers, as well as multicomponent functional precursors and nanofillers. Further efforts are being made, as described in this review, to carry out green and eco-friendly synthetic protocols, such as sol–gel synthesis, starting from bio-based, natural or waste substances, in order to produce more sustainable (multi)functional hybrid or nanocomposite coatings, with a focus on their life cycle in accordance with the circular economy principles.
IRIS Cnr arrow_drop_down International Journal of Molecular SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms24065472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down International Journal of Molecular SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms24065472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Bentham Science Publishers Ltd. Saturnino C.; Caruso A.; Longo P.; Capasso A.; Pingitore A.; Caroleo M. C.; Cione E.; Perri M.; NICOLO', Francesco; Nardo V. M.; Scolaro L. M.; Sinicropi M. S.; Plutino M. R.; El-Kashef H.;pmid: 25786507
handle: 20.500.11770/137278 , 11386/4643665 , 11570/3100412 , 11563/122588
The 9-(bromoalkyl)-1,4-dimethyl-9H-carbazole (2a-d) derivatives, characterized by the presence of five or seven methylenic spacer groups bonded to the carbazole nitrogen, have been synthesized from the corresponding 1,4- dimethyl-9H-carbazole and appropriate dibromoalkane following a general synthetic method. All the prepared species have been fully characterized by means of IR, and (1)H and (13)C NMR spectroscopy, GC-MS and Elemental analysis. Good crystals of the 2c have been obtained and the crystal structure has been solved by means of X-ray diffractometry. In order to study the cytotoxic effect of 2a, 2b, 2c, 2d carbazole derivatives on A2780 ovarian cancer cells, we performed MTT assay after exposure of this cell population to those compounds in a concentration range from 1 to 10μM. Finally, we want to verify whether the cytotoxic effect of the 2c carbazole is mediated by apoptotic mechanisms, by performing chromatin condensation assay on the A2780 cell cultures upon the carbazole treatment at concentration of 10 μM for 72h. All together our data demonstrate that carbazole derivatives exert inhibitory effects on ovarian cancer cell growth, highlighting a stronger and a dose-dependent anti proliferative activity displayed by 2c carbazole, designating this compound, as a better candidate in the treatment of human ovarian cancer.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale dell'Università della CalabriaArticle . 2015Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di SalernoArticle . 2015Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1568026615666150317222444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale dell'Università della CalabriaArticle . 2015Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di SalernoArticle . 2015Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1568026615666150317222444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Patent 2020 ItalyAuthors: Maria Rosaria Plutino; Simone Cappello; Giuseppe Sabatino; Giulia Rando;handle: 20.500.14243/449707 , 11570/3258945
A multi-functional hybrid material based on natural clays for environmental bio-remediation and recover), is disclosed. In particular, the invention discloses the design and development of appropriately functionalized nanohybrid materials starting from nanostructured clays and the subsequent study of the absorbent properties in relation to hydrocarbons, heavy metals, chemical pollutants, oils, particulate, and microplastics. These nanomaterials were prepared in order to remove the hydrocarbon pollutants (for example oil) and metal pollutants in natural matrices (marine environment), with potential applications in the field of environmental remediation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11570/3258945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11570/3258945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 ItalyAuthors: Maria Rosaria Plutino;handle: 20.500.14243/449715
Nowadays the need for hybrid multifunctional nanostructured materials or nanocomposite has increased and become essential as nanotechnology and nanomaterial engineering is advancing with more accurate, sophisticated and either sustainable applications. [1] In particular, new (multi)functional hybrid organic-inorganic materials (HOIM) can be developed and used in different potential application fields like opto-electronic, mechanical, sensing, energy conversion and storage, environmental technologies, bio-medical, textiles, blue growth, building, and cultural heritage sectors, thanks to their unique and improved features and surface properties. [2] In this regard, (waste)water treatment and remediation methods represent an important subject of investigation for the abatement not only of the common classes of environmental pollutants, but also of various classes of emerging substances, constantly released into the environment by the anthropogenic activities. As a matter of facts, a variety of chemical synthesis and methods are actually used to develop hybrid materials and filtration membranes for water purification. [3-4] Furthermore, for the sake of sustainability and environmental protection, also the design and development of (multi)functional nanohybrids, nanocomposites and functional polymeric blends through a multidisciplinary feedback could considerably contribute to the improvement of human daily life and well-being. Herein, the development and application of innovative (multi)functional hybrid materials or nanocomposites, as well as membranes for the selective removal of contaminants from water, will be described and discussed in order to undertake the correlation between the designed functionalities and the properties of the obtained materials to assess the importance of a rational safe-by-design of more sustainable and innovative solutions for water remediation. These materials are based on the use of an appropriate multicomponent polymeric matrix based on opportune functional polymeric precursors, natural fillers or molecules, or either blended polymers. Further efforts are being made in this regard to create synthetic protocols and advanced technologies [4] that are fully green and eco-friendly, beginning with bio-based natural primary or secondary raw materials, in order to produce more sustainable, recyclable and re-usable materials, paying attention to their life cycle from cradle to grave in accordance with the circular economy principles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5dc13d9f0a0b84de02699cad83512e28&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5dc13d9f0a0b84de02699cad83512e28&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021 ItalyAuthors: Maria Rosaria Plutino;handle: 20.500.14243/449732
The speech will be focused on the development of novel sustainable bio-based hybrid materials that can be efficiently applied in high-performance applications, where the current petrochemical derived materials represent a threat to the environment and human health. The potential applications and performances of these advanced materials, useful as they are, or as surface coatings, will be shown in terms of environmental, economic, and social impact. A sustainability assessment of these bio-based materials will be introduced to quantify performance, toxicity and reduced greenhouse gas emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::fc12d0032e494c818deca0890301d511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::fc12d0032e494c818deca0890301d511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object 2021 ItalyAuthors: Maria Rosaria Plutino;handle: 20.500.14243/449711
Nanotechnologies are recently turning towards the development of hybrid nanomaterials and functional nanocomposites, characterized by the presence of functional nanometric components or nanofillers dispersed in a polymeric matrix, thus resulting in increased properties compared to those featured by both starting component. The innovative idea consists in the design of an advanced nanohybrid or nanocomposite material, suitable as surface coating or as it is for different sustainable applications, thanks to their improved properties, such as: 1)antivegetative or antibacterial; 2)flame-retardant; 3)drug-release; 4)sensing; 5)mechanical resistance; 6)absorption and degradation of pollutants . In particular, the inclusion of sensing functions into fabric textiles is a powerful approach towards the development of the so-called, "smart textiles", allowing the development of wearable sensors, i.e. new systems still characterized by main textiles features such as flexibility, biocompatibility, comfort, together with mechanical resistance, able to react and adapt to specific external environment stimuli from their surroundings. This work will show the design, synthesis and characterization of hybrid nanomaterials and multifunctional smart and innovative nanocomposites, based on functional nanoparticles and nanofillers, dispersed in polymeric matrices and/or in combination with appropriate dopants, used as they are or as coatings of different substrates, for applications in optoelectronics, sensors, catalysis, cultural heritage, environmental remediation and biomedicine, construction, textiles and naval sectors. The key-step for sustainability comes from the setting of completely green and eco-friendly synthesis protocols, starting from natural substances or wastes, which lead to the obtainment of functional materials that can also be recycled.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2b77e73bd5ec0e1c7ea839017606a1ab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2b77e73bd5ec0e1c7ea839017606a1ab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 ItalyPublisher:MDPI AG Tarek AbouElmaaty; Shereen Abdeldayem; Shaimaa Ramadan; Khaled Sayed-Ahmed; Maria Plutino;In this study, we developed a new approach for depositing selenium nanoparticles (SeNPs) into polypropylene (PP) fabrics via a one-step process under hydrothermal conditions by using an IR-dyeing machine to incorporate several functionalities, mainly coloration, antibacterial activity and ultraviolet (UV) protection. The formation, size distribution, and dispersion of the SeNPs were determined using X-ray diffraction (XRD), ultraviolet-visible (UV/Vis), transmission electron microscopy (TEM) and the color strength, fastness, antibacterial properties, and UV protection of the treated fabrics were also explored. The UV-Vis spectra and TEM analysis confirmed the synthesis of spherical well-dispersed SeNPs and the XRD analysis showed the successful deposition of SeNPs into PP fabrics. The obtained results demonstrate that the SeNPs-PP fabrics is accompanied by a noticeable enhancement in measurements of color strength, fastness, and UV-protection factor (UPF), as well as excellent antibacterial activity. Viability studies showed that SeNPs-PP fabrics are non-toxic against wi-38cell line. In addition, the treated SeNPs-PP fabrics showed an increase in conductivity. The obtained multifunctional fabrics are promising for many industrial applications such as the new generation of curtains, medical fabrics, and even automotive interior parts.
Polymers arrow_drop_down PolymersOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4360/13/15/2483/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym13152483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Polymers arrow_drop_down PolymersOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4360/13/15/2483/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym13152483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Patent 2023 ItalyAuthors: Maria Rosaria Plutino; Simone Cappello;handle: 20.500.14243/449708
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::86ecefbe91123d8c55a24c62e4f6493f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::86ecefbe91123d8c55a24c62e4f6493f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 ItalyAuthors: Maria Rosaria Plutino;handle: 20.500.14243/449714
Recently, nanotechnologies have shifted toward the development of hybrid nanomaterials and functional nanocomposites, which are distinguished by the presence of functional nanometric components or nanofillers dispersed in a polymeric matrix, resulting in increased properties compared to those of either starting component. The original concept is to create an enhanced nanohybrid or nanocomposite material that is appropriate as a surface coating or for other sustainable applications due to increased qualities such as: 1) antifouling or antibacterial; 2) flame-retardant; 3) drug release; 4) sensing; 5) mechanical resistance; and 6) pollutant absorption and degradation [1]. In particular, the incorporation of sensing functions into fabric textiles is a powerful approach toward the development of so-called "smart textiles", enabling the development of wearable sensors, i.e. novel systems characterized by main textile characteristics such as flexibility, biocompatibility, comfort, and mechanical resistance, capable of reacting and adapting to specific external stimuli from their surroundings [2]. This work will show in details the design, synthesis, and characterization of hybrid nanomaterials and multifunctional, innovative and smart nanocomposites based on functional nanoparticles and nanofillers dispersed in polymeric matrices and/or in combination with suitable dopants, used as-is or as coatings of various substrates, for uses in opto-electronic devices, sensors, catalytic processes, cultural heritage, environmental remediation, construction, blue growth, biomedicine and textiles. The setting up of totally green and eco-friendly synthesis procedures based on natural components or wastes to produce functional products that can also be recycled, will be underlined as a crucial step toward sustainability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::bcab802ec3e0df6377b9e0a9918f53a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::bcab802ec3e0df6377b9e0a9918f53a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Authors: Silvia Sfameni; Giulia Rando; Maria Rosaria Plutino;doi: 10.3390/ijms24065472
pmid: 36982545
pmc: PMC10049648
handle: 20.500.14243/449701 , 11570/3258927
doi: 10.3390/ijms24065472
pmid: 36982545
pmc: PMC10049648
handle: 20.500.14243/449701 , 11570/3258927
To meet modern society’s requirements for sustainability and environmental protection, innovative and smart surface coatings are continually being developed to improve or impart surface functional qualities and protective features. These needs regard numerous different sectors, such as cultural heritage, building, naval, automotive, environmental remediation and textiles. In this regard, researchers and nanotechnology are therefore mostly devoted to the development of new and smart nanostructured finishings and coatings featuring different implemented properties, such as anti-vegetative or antibacterial, hydrophobic, anti-stain, fire retardant, controlled release of drugs, detection of molecules and mechanical resistance. A variety of chemical synthesis techniques are usually employed to obtain novel nanostructured materials based on the use of an appropriate polymeric matrix in combination with either functional doping molecules or blended polymers, as well as multicomponent functional precursors and nanofillers. Further efforts are being made, as described in this review, to carry out green and eco-friendly synthetic protocols, such as sol–gel synthesis, starting from bio-based, natural or waste substances, in order to produce more sustainable (multi)functional hybrid or nanocomposite coatings, with a focus on their life cycle in accordance with the circular economy principles.
IRIS Cnr arrow_drop_down International Journal of Molecular SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms24065472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down International Journal of Molecular SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms24065472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Bentham Science Publishers Ltd. Saturnino C.; Caruso A.; Longo P.; Capasso A.; Pingitore A.; Caroleo M. C.; Cione E.; Perri M.; NICOLO', Francesco; Nardo V. M.; Scolaro L. M.; Sinicropi M. S.; Plutino M. R.; El-Kashef H.;pmid: 25786507
handle: 20.500.11770/137278 , 11386/4643665 , 11570/3100412 , 11563/122588
The 9-(bromoalkyl)-1,4-dimethyl-9H-carbazole (2a-d) derivatives, characterized by the presence of five or seven methylenic spacer groups bonded to the carbazole nitrogen, have been synthesized from the corresponding 1,4- dimethyl-9H-carbazole and appropriate dibromoalkane following a general synthetic method. All the prepared species have been fully characterized by means of IR, and (1)H and (13)C NMR spectroscopy, GC-MS and Elemental analysis. Good crystals of the 2c have been obtained and the crystal structure has been solved by means of X-ray diffractometry. In order to study the cytotoxic effect of 2a, 2b, 2c, 2d carbazole derivatives on A2780 ovarian cancer cells, we performed MTT assay after exposure of this cell population to those compounds in a concentration range from 1 to 10μM. Finally, we want to verify whether the cytotoxic effect of the 2c carbazole is mediated by apoptotic mechanisms, by performing chromatin condensation assay on the A2780 cell cultures upon the carbazole treatment at concentration of 10 μM for 72h. All together our data demonstrate that carbazole derivatives exert inhibitory effects on ovarian cancer cell growth, highlighting a stronger and a dose-dependent anti proliferative activity displayed by 2c carbazole, designating this compound, as a better candidate in the treatment of human ovarian cancer.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale dell'Università della CalabriaArticle . 2015Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di SalernoArticle . 2015Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1568026615666150317222444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale dell'Università della CalabriaArticle . 2015Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di SalernoArticle . 2015Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1568026615666150317222444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Patent 2020 ItalyAuthors: Maria Rosaria Plutino; Simone Cappello; Giuseppe Sabatino; Giulia Rando;handle: 20.500.14243/449707 , 11570/3258945
A multi-functional hybrid material based on natural clays for environmental bio-remediation and recover), is disclosed. In particular, the invention discloses the design and development of appropriately functionalized nanohybrid materials starting from nanostructured clays and the subsequent study of the absorbent properties in relation to hydrocarbons, heavy metals, chemical pollutants, oils, particulate, and microplastics. These nanomaterials were prepared in order to remove the hydrocarbon pollutants (for example oil) and metal pollutants in natural matrices (marine environment), with potential applications in the field of environmental remediation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11570/3258945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11570/3258945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 ItalyAuthors: Maria Rosaria Plutino;handle: 20.500.14243/449715
Nowadays the need for hybrid multifunctional nanostructured materials or nanocomposite has increased and become essential as nanotechnology and nanomaterial engineering is advancing with more accurate, sophisticated and either sustainable applications. [1] In particular, new (multi)functional hybrid organic-inorganic materials (HOIM) can be developed and used in different potential application fields like opto-electronic, mechanical, sensing, energy conversion and storage, environmental technologies, bio-medical, textiles, blue growth, building, and cultural heritage sectors, thanks to their unique and improved features and surface properties. [2] In this regard, (waste)water treatment and remediation methods represent an important subject of investigation for the abatement not only of the common classes of environmental pollutants, but also of various classes of emerging substances, constantly released into the environment by the anthropogenic activities. As a matter of facts, a variety of chemical synthesis and methods are actually used to develop hybrid materials and filtration membranes for water purification. [3-4] Furthermore, for the sake of sustainability and environmental protection, also the design and development of (multi)functional nanohybrids, nanocomposites and functional polymeric blends through a multidisciplinary feedback could considerably contribute to the improvement of human daily life and well-being. Herein, the development and application of innovative (multi)functional hybrid materials or nanocomposites, as well as membranes for the selective removal of contaminants from water, will be described and discussed in order to undertake the correlation between the designed functionalities and the properties of the obtained materials to assess the importance of a rational safe-by-design of more sustainable and innovative solutions for water remediation. These materials are based on the use of an appropriate multicomponent polymeric matrix based on opportune functional polymeric precursors, natural fillers or molecules, or either blended polymers. Further efforts are being made in this regard to create synthetic protocols and advanced technologies [4] that are fully green and eco-friendly, beginning with bio-based natural primary or secondary raw materials, in order to produce more sustainable, recyclable and re-usable materials, paying attention to their life cycle from cradle to grave in accordance with the circular economy principles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5dc13d9f0a0b84de02699cad83512e28&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5dc13d9f0a0b84de02699cad83512e28&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021 ItalyAuthors: Maria Rosaria Plutino;handle: 20.500.14243/449732
The speech will be focused on the development of novel sustainable bio-based hybrid materials that can be efficiently applied in high-performance applications, where the current petrochemical derived materials represent a threat to the environment and human health. The potential applications and performances of these advanced materials, useful as they are, or as surface coatings, will be shown in terms of environmental, economic, and social impact. A sustainability assessment of these bio-based materials will be introduced to quantify performance, toxicity and reduced greenhouse gas emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::fc12d0032e494c818deca0890301d511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::fc12d0032e494c818deca0890301d511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu