- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Traut, M.; Gilbert, P.; Walsh, C.; Bows, A.; Filippone, A.; Stansby, P.; Wood, R.;AbstractWind is a renewable energy source that is freely available on the world’s oceans. As shipping faces the challenge of reducing its dependence on fossil fuels and cutting its carbon emissions this paper seeks to explore the potential for harnessing wind power for shipping. Numerical models of two wind power technologies, a Flettner rotor and a towing kite, are linked with wind data along a set of five trade routes. Wind-generated thrust and propulsive power are computed as a function of local wind and ship velocity. The average wind power contribution on a given route ranges between 193kW and 373kW for a single Flettner rotor and between 127kW and 461kW for the towing kite. The variability of the power output from the Flettner rotor is shown to be smaller than that from the towing kite while, due to the different dependencies on wind speed and direction, the average power contribution from a Flettner rotor is higher than that from the kite on some routes and lower on others. While for most forms of international cargo shipping wind may not be suitable as the sole source of propulsive energy, a comparison of average output to main engine power requirements of typical vessels serving the routes indicates that it could deliver a significant share. For instance, installing three Flettner rotors on a 5500dwt general cargo carrier could, on average, provide more than half of the power required by the main engine under typical slow steaming conditions. Uncertainties and simplifying assumptions underlying the model analysis are discussed and implications of the results are considered in light of the urgent need for decarbonisation. This paper demonstrates the significant opportunities for step jump emissions reductions that wind technologies have to offer. It outlines next steps towards realising the potential, highlighting a demand for more detailed studies on socio-economic and technical barriers to implementation, and providing a basis for research into step-change emissions reductions in the shipping sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.07.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 128 citations 128 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.07.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 Australia, United KingdomPublisher:The Royal Society Funded by:UKRI | i-BUILD: Infrastructure B...UKRI| i-BUILD: Infrastructure BUsiness models, valuation and Innovation for Local DeliveryRichard J. Dawson; David Thompson; Daniel Johns; Ruth Wood; Geoff Darch; Lee Chapman; Paul N. Hughes; Geoff V. R. Watson; Kevin Paulson; Sarah Bell; Simon N. Gosling; William Powrie; Jim W. Hall;Extreme weather causes substantial adverse socio-economic impacts by damaging and disrupting the infrastructure services that underpin modern society. Globally, $2.5tn a year is spent on infrastructure which is typically designed to last decades, over which period projected changes in the climate will modify infrastructure performance. A systems approach has been developed to assess risks across all infrastructure sectors to guide national policy making and adaptation investment. The method analyses diverse evidence of climate risks and adaptation actions, to assess the urgency and extent of adaptation required. Application to the UK shows that despite recent adaptation efforts, risks to infrastructure outweigh opportunities. Flooding is the greatest risk to all infrastructure sectors: even if the Paris Agreement to limit global warming to 2°C is achieved, the number of users reliant on electricity infrastructure at risk of flooding would double, while a 4°C rise could triple UK flood damage. Other risks are significant, for example 5% and 20% of river catchments would be unable to meet water demand with 2°C and 4°C global warming respectively. Increased interdependence between infrastructure systems, especially from energy and information and communication technology (ICT), are amplifying risks, but adaptation action is limited by lack of clear responsibilities. A programme to build national capability is urgently required to improve infrastructure risk assessment. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’.
CORE arrow_drop_down Durham Research OnlineArticle . 2018 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/24907/1/24907.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2018License: CC BYFull-Text: http://dro.dur.ac.uk/24907/Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/247692Data sources: Bielefeld Academic Search Engine (BASE)University of Hull: Repository@HullArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/11343/272881Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesConference objectData sources: OpenAPC Global InitiativeThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2017.0298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Durham Research OnlineArticle . 2018 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/24907/1/24907.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2018License: CC BYFull-Text: http://dro.dur.ac.uk/24907/Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/247692Data sources: Bielefeld Academic Search Engine (BASE)University of Hull: Repository@HullArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/11343/272881Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesConference objectData sources: OpenAPC Global InitiativeThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2017.0298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, Norway, United Kingdom, United KingdomPublisher:IOP Publishing Glen P. Peters; Julia K. Steinberger; Julia K. Steinberger; Alice Bows-Larkin; William F. Lamb; JT Roberts; F.R. Wood;handle: 11250/2465272
Countries are known to follow diverse pathways of life expectancy and carbon emissions, but little is known about factors driving these dynamics. In this letter we estimate the cross-sectional economic, demographic and geographic drivers of consumption-based carbon emissions. Using clustering techniques, countries are grouped according to their drivers, and analysed with respect to a criteria of one tonne of carbon emissions per capita and a life expectancy over 70 years (Goldemberg's Corner). Five clusters of countries are identified with distinct drivers and highly differentiated outcomes of life expectancy and carbon emissions. Representatives from four clusters intersect within Goldemberg's Corner, suggesting diverse combinations of drivers may still lead to sustainable outcomes, presenting many countries with an opportunity to follow a pathway towards low-carbon human development. By contrast, within Goldemberg's Corner, there are no countries from the core, wealthy consuming nations. These results reaffirm the need to address economic inequalities within international agreements for climate mitigation, but acknowledge plausible and accessible examples of low-carbon human development for countries that share similar underlying drivers of carbon emissions. In addition, we note differences in drivers between models of territorial and consumption-based carbon emissions, and discuss interesting exceptions to the drivers-based cluster analysis.
CORE arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2014Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/1/014011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2014Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/1/014011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2015 United KingdomPublisher:Thomas Telford Ltd. Wood, Frances Ruth; Calverley, Daniel; Glynn, Steven; Mander, Sarah; Walsh, Conor; Kuriakose, Jaise; Hill, Frances; Roeder, Mirjam;The impacts of climate change on the energy system are diverse; this article focuses on the potential effects on UK energy demand and the ramifications for national infrastructure building on the findings of the UK’s 2012 Climate Change Risk Assessment. It reviews the available literature, where it exists, on the relationships among current energy demand, weather and climate change, and the implications for these relationships due to mitigation plans and potential adaptation responses. The review highlights the mechanisms by which future climate change, in particular changes in mean and extreme temperature, could affect the annual amount of UK energy demand and the seasonal, daily and spatial variation of the impacts. Published literature quantifying the effects of climate change on UK energy demand is limited; thus, where evidence is not available, information on the current relationship between weather and demand is combined with expert judgement to highlight potential demand responses to a changing climate without quantification. The impacts identified could have significant implications for the long-term planning of energy infrastructure and system operation and building design, depending on their magnitude, highlighting the need for further research in this area.
CORE arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jinam.14.00039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jinam.14.00039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Informa UK Limited Authors: Elena Dawkins; Alice Bows-Larkin; F.R. Wood; John Barrett;Background: The consumption emissions of many developed countries including the UK are significantly larger than their territorial emissions – the focus of international mitigation commitments.Methods: The paper presents the development and application of a multiregional input–output based scenario tool to explore the impact of carbon reduction measures on territorial and consumption emissions.Results: Applying the tool to estimate the effect of current UK government's mitigation plans demonstrates that coupled with expected growth in the economy and population, ceretis paribus, territorial emissions would reduce by ∼40% by 2030 and consumption emissions would increase by ∼14%.Conclusion: The analysis puts the UK's own reduction efforts in the context of its wider emissions responsibility, highlighting the significance of carbon embodied in goods imported from non-Annex B countries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2014.913864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2014.913864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United KingdomPublisher:Elsevier BV Authors: Wood, F. R.; Bows, A.; Anderson, K.; Bows-Larkin, Alice;Delivering reductions in greenhouse gas emissions from the aviation sector requires support and action from all tiers of government. There has been considerable focus on the policies that can be implemented at international and national levels; however, sub-national bodies can also play an important and influential role. In order to identify what this role may be, it is important for sub-national governments to have an understanding of the size of their potential emissions responsibility. At present there is no widely accepted methodology for the apportionment of either international or domestic aviation emissions to sub-national levels. This paper assesses a number of existing consumer- and producer-based CO2 apportionment regimes that could be used to allocate the emissions from aviation to regional and other sub-national levels. This is followed by the presentation of a new hybrid consumer–producer apportionment regime applicable to aviation. This new approach is designed to provide an emissions baseline for a region that reflects its share of responsibility for the UK’s aviation emissions as both a producer of emissions and consumer of the services provided by aviation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tranpol.2010.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tranpol.2010.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Traut, M.; Gilbert, P.; Walsh, C.; Bows, A.; Filippone, A.; Stansby, P.; Wood, R.;AbstractWind is a renewable energy source that is freely available on the world’s oceans. As shipping faces the challenge of reducing its dependence on fossil fuels and cutting its carbon emissions this paper seeks to explore the potential for harnessing wind power for shipping. Numerical models of two wind power technologies, a Flettner rotor and a towing kite, are linked with wind data along a set of five trade routes. Wind-generated thrust and propulsive power are computed as a function of local wind and ship velocity. The average wind power contribution on a given route ranges between 193kW and 373kW for a single Flettner rotor and between 127kW and 461kW for the towing kite. The variability of the power output from the Flettner rotor is shown to be smaller than that from the towing kite while, due to the different dependencies on wind speed and direction, the average power contribution from a Flettner rotor is higher than that from the kite on some routes and lower on others. While for most forms of international cargo shipping wind may not be suitable as the sole source of propulsive energy, a comparison of average output to main engine power requirements of typical vessels serving the routes indicates that it could deliver a significant share. For instance, installing three Flettner rotors on a 5500dwt general cargo carrier could, on average, provide more than half of the power required by the main engine under typical slow steaming conditions. Uncertainties and simplifying assumptions underlying the model analysis are discussed and implications of the results are considered in light of the urgent need for decarbonisation. This paper demonstrates the significant opportunities for step jump emissions reductions that wind technologies have to offer. It outlines next steps towards realising the potential, highlighting a demand for more detailed studies on socio-economic and technical barriers to implementation, and providing a basis for research into step-change emissions reductions in the shipping sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.07.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 128 citations 128 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.07.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 Australia, United KingdomPublisher:The Royal Society Funded by:UKRI | i-BUILD: Infrastructure B...UKRI| i-BUILD: Infrastructure BUsiness models, valuation and Innovation for Local DeliveryRichard J. Dawson; David Thompson; Daniel Johns; Ruth Wood; Geoff Darch; Lee Chapman; Paul N. Hughes; Geoff V. R. Watson; Kevin Paulson; Sarah Bell; Simon N. Gosling; William Powrie; Jim W. Hall;Extreme weather causes substantial adverse socio-economic impacts by damaging and disrupting the infrastructure services that underpin modern society. Globally, $2.5tn a year is spent on infrastructure which is typically designed to last decades, over which period projected changes in the climate will modify infrastructure performance. A systems approach has been developed to assess risks across all infrastructure sectors to guide national policy making and adaptation investment. The method analyses diverse evidence of climate risks and adaptation actions, to assess the urgency and extent of adaptation required. Application to the UK shows that despite recent adaptation efforts, risks to infrastructure outweigh opportunities. Flooding is the greatest risk to all infrastructure sectors: even if the Paris Agreement to limit global warming to 2°C is achieved, the number of users reliant on electricity infrastructure at risk of flooding would double, while a 4°C rise could triple UK flood damage. Other risks are significant, for example 5% and 20% of river catchments would be unable to meet water demand with 2°C and 4°C global warming respectively. Increased interdependence between infrastructure systems, especially from energy and information and communication technology (ICT), are amplifying risks, but adaptation action is limited by lack of clear responsibilities. A programme to build national capability is urgently required to improve infrastructure risk assessment. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’.
CORE arrow_drop_down Durham Research OnlineArticle . 2018 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/24907/1/24907.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2018License: CC BYFull-Text: http://dro.dur.ac.uk/24907/Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/247692Data sources: Bielefeld Academic Search Engine (BASE)University of Hull: Repository@HullArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/11343/272881Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesConference objectData sources: OpenAPC Global InitiativeThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2017.0298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Durham Research OnlineArticle . 2018 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/24907/1/24907.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2018License: CC BYFull-Text: http://dro.dur.ac.uk/24907/Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/247692Data sources: Bielefeld Academic Search Engine (BASE)University of Hull: Repository@HullArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/11343/272881Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesConference objectData sources: OpenAPC Global InitiativeThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2017.0298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, Norway, United Kingdom, United KingdomPublisher:IOP Publishing Glen P. Peters; Julia K. Steinberger; Julia K. Steinberger; Alice Bows-Larkin; William F. Lamb; JT Roberts; F.R. Wood;handle: 11250/2465272
Countries are known to follow diverse pathways of life expectancy and carbon emissions, but little is known about factors driving these dynamics. In this letter we estimate the cross-sectional economic, demographic and geographic drivers of consumption-based carbon emissions. Using clustering techniques, countries are grouped according to their drivers, and analysed with respect to a criteria of one tonne of carbon emissions per capita and a life expectancy over 70 years (Goldemberg's Corner). Five clusters of countries are identified with distinct drivers and highly differentiated outcomes of life expectancy and carbon emissions. Representatives from four clusters intersect within Goldemberg's Corner, suggesting diverse combinations of drivers may still lead to sustainable outcomes, presenting many countries with an opportunity to follow a pathway towards low-carbon human development. By contrast, within Goldemberg's Corner, there are no countries from the core, wealthy consuming nations. These results reaffirm the need to address economic inequalities within international agreements for climate mitigation, but acknowledge plausible and accessible examples of low-carbon human development for countries that share similar underlying drivers of carbon emissions. In addition, we note differences in drivers between models of territorial and consumption-based carbon emissions, and discuss interesting exceptions to the drivers-based cluster analysis.
CORE arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2014Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/1/014011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2014Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/1/014011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2015 United KingdomPublisher:Thomas Telford Ltd. Wood, Frances Ruth; Calverley, Daniel; Glynn, Steven; Mander, Sarah; Walsh, Conor; Kuriakose, Jaise; Hill, Frances; Roeder, Mirjam;The impacts of climate change on the energy system are diverse; this article focuses on the potential effects on UK energy demand and the ramifications for national infrastructure building on the findings of the UK’s 2012 Climate Change Risk Assessment. It reviews the available literature, where it exists, on the relationships among current energy demand, weather and climate change, and the implications for these relationships due to mitigation plans and potential adaptation responses. The review highlights the mechanisms by which future climate change, in particular changes in mean and extreme temperature, could affect the annual amount of UK energy demand and the seasonal, daily and spatial variation of the impacts. Published literature quantifying the effects of climate change on UK energy demand is limited; thus, where evidence is not available, information on the current relationship between weather and demand is combined with expert judgement to highlight potential demand responses to a changing climate without quantification. The impacts identified could have significant implications for the long-term planning of energy infrastructure and system operation and building design, depending on their magnitude, highlighting the need for further research in this area.
CORE arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jinam.14.00039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jinam.14.00039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Informa UK Limited Authors: Elena Dawkins; Alice Bows-Larkin; F.R. Wood; John Barrett;Background: The consumption emissions of many developed countries including the UK are significantly larger than their territorial emissions – the focus of international mitigation commitments.Methods: The paper presents the development and application of a multiregional input–output based scenario tool to explore the impact of carbon reduction measures on territorial and consumption emissions.Results: Applying the tool to estimate the effect of current UK government's mitigation plans demonstrates that coupled with expected growth in the economy and population, ceretis paribus, territorial emissions would reduce by ∼40% by 2030 and consumption emissions would increase by ∼14%.Conclusion: The analysis puts the UK's own reduction efforts in the context of its wider emissions responsibility, highlighting the significance of carbon embodied in goods imported from non-Annex B countries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2014.913864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2014.913864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United KingdomPublisher:Elsevier BV Authors: Wood, F. R.; Bows, A.; Anderson, K.; Bows-Larkin, Alice;Delivering reductions in greenhouse gas emissions from the aviation sector requires support and action from all tiers of government. There has been considerable focus on the policies that can be implemented at international and national levels; however, sub-national bodies can also play an important and influential role. In order to identify what this role may be, it is important for sub-national governments to have an understanding of the size of their potential emissions responsibility. At present there is no widely accepted methodology for the apportionment of either international or domestic aviation emissions to sub-national levels. This paper assesses a number of existing consumer- and producer-based CO2 apportionment regimes that could be used to allocate the emissions from aviation to regional and other sub-national levels. This is followed by the presentation of a new hybrid consumer–producer apportionment regime applicable to aviation. This new approach is designed to provide an emissions baseline for a region that reflects its share of responsibility for the UK’s aviation emissions as both a producer of emissions and consumer of the services provided by aviation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tranpol.2010.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tranpol.2010.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu