- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:The Royal Society Funded by:UKRI | Sustainable Processing of...UKRI| Sustainable Processing of Energy Materials from WasteHaoyu Liu; Zhen Xu; Zhenyu Guo; Jingyu Feng; Haoran Li; Tong Qiu; Magdalena Titirici;pmid: 34510922
Waste management is one of the biggest environmental challenges worldwide. Biomass-derived hard carbons, which can be applied to rechargeable batteries, can contribute to mitigating environmental changes by enabling the use of renewable energy. This study has carried out a comparative environmental assessment of sustainable hard carbons, produced from System A (hydrothermal carbonization (HTC) followed by pyrolysis) and System B (direct pyrolysis) with different carbon yields, as anodes in sodium-ion batteries (SIBs). We have also analysed different scenarios to save energy in our processes and compared the biomass-derived hard carbons with commercial graphite used in lithium-ion batteries. The life cycle assessment results show that the two systems display significant savings in terms of their global warming potential impact (A1: −30%; B1: −21%), followed by human toxicity potential, photochemical oxidants creation potential, acidification potential and eutrophication potential (both over −90%). Possessing the best electrochemical performance for SIBs among our prepared hard carbons, the HTC-based method is more stable in both environmental and electrochemical aspects than the direct pyrolysis method. Such results help a comprehensive understanding of sustainable hard carbons used in SIBs and show an environmental potential to the practical technologies. This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)’.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional RepositoryPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2020.0340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional RepositoryPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2020.0340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Haoran Li; Shuyuan Zhang; Jian Zhou; Zhiyin Wang; Xuebing Zhao; Tong Qiu;doi: 10.1002/bbb.2406
AbstractThe production of bio‐ethylene is a promising way to replace fossil‐based ethylene production, reducing greenhouse gas emissions and working towards China's carbon neutrality goals. This study elaborates on five bio‐ethylene technological pathways: first‐ and second‐generation bioethanol dehydration, direct and indirect thermochemical synthesis, and methanol‐to‐olefins (MTO). It retrieves information about them from commercial patents and the scientific literature, and comprehensively assesses their potential for application in large‐scale ethylene production in China. The techno‐economic feasibility of these five technological pathways is discussed in terms of feedstock availability, investment level, technological development level, and political issues such as the carbon neutrality goal to which China's government is committed. Overall, two pathways (indirect thermochemical synthesis and MTO) exhibited competitive minimum ethylene selling prices at 5243 yuan/t (822 USD t–1) and 6767 yuan/t (1061 USD t–1), respectively, of which both are lower than the average ethylene market price of 7000 yuan/t (1098 USD t–1). In comparison with the conventional fossil‐derived ethylene, bio‐ethylene could decrease carbon emission by 3.2%–15.1% under a scenario of 20% bio‐ethylene substitution in 2019, showing promising potential for decarbonizing the ethylene industry and contributing to the achievement of China's carbon neutrality goals. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd.
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:The Royal Society Funded by:UKRI | Sustainable Processing of...UKRI| Sustainable Processing of Energy Materials from WasteHaoyu Liu; Zhen Xu; Zhenyu Guo; Jingyu Feng; Haoran Li; Tong Qiu; Magdalena Titirici;pmid: 34510922
Waste management is one of the biggest environmental challenges worldwide. Biomass-derived hard carbons, which can be applied to rechargeable batteries, can contribute to mitigating environmental changes by enabling the use of renewable energy. This study has carried out a comparative environmental assessment of sustainable hard carbons, produced from System A (hydrothermal carbonization (HTC) followed by pyrolysis) and System B (direct pyrolysis) with different carbon yields, as anodes in sodium-ion batteries (SIBs). We have also analysed different scenarios to save energy in our processes and compared the biomass-derived hard carbons with commercial graphite used in lithium-ion batteries. The life cycle assessment results show that the two systems display significant savings in terms of their global warming potential impact (A1: −30%; B1: −21%), followed by human toxicity potential, photochemical oxidants creation potential, acidification potential and eutrophication potential (both over −90%). Possessing the best electrochemical performance for SIBs among our prepared hard carbons, the HTC-based method is more stable in both environmental and electrochemical aspects than the direct pyrolysis method. Such results help a comprehensive understanding of sustainable hard carbons used in SIBs and show an environmental potential to the practical technologies. This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)’.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional RepositoryPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2020.0340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional RepositoryPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2020.0340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Haoran Li; Shuyuan Zhang; Jian Zhou; Zhiyin Wang; Xuebing Zhao; Tong Qiu;doi: 10.1002/bbb.2406
AbstractThe production of bio‐ethylene is a promising way to replace fossil‐based ethylene production, reducing greenhouse gas emissions and working towards China's carbon neutrality goals. This study elaborates on five bio‐ethylene technological pathways: first‐ and second‐generation bioethanol dehydration, direct and indirect thermochemical synthesis, and methanol‐to‐olefins (MTO). It retrieves information about them from commercial patents and the scientific literature, and comprehensively assesses their potential for application in large‐scale ethylene production in China. The techno‐economic feasibility of these five technological pathways is discussed in terms of feedstock availability, investment level, technological development level, and political issues such as the carbon neutrality goal to which China's government is committed. Overall, two pathways (indirect thermochemical synthesis and MTO) exhibited competitive minimum ethylene selling prices at 5243 yuan/t (822 USD t–1) and 6767 yuan/t (1061 USD t–1), respectively, of which both are lower than the average ethylene market price of 7000 yuan/t (1098 USD t–1). In comparison with the conventional fossil‐derived ethylene, bio‐ethylene could decrease carbon emission by 3.2%–15.1% under a scenario of 20% bio‐ethylene substitution in 2019, showing promising potential for decarbonizing the ethylene industry and contributing to the achievement of China's carbon neutrality goals. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd.
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu