- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Afsarian, F; Saber, A; Pourzangbar, A; Olabi, AG; Khanmohammadi, MA;handle: 11585/908043
Abstract Sustainability targets can be achieved by pursuing environmental-friendly and energy-efficient design and construction. Being sub-standard in terms of stability, buildings would pose serious threats to the environment and natural sources. Therefore, having sustainable design and construction is of great importance in building industry. To achieve sustainability targets, recently recycled aggregates attracted special attention. While several studies have been conducted on the thermal and hydrometric characteristics of recycled materials, there are few studies available on the evaluation of the applicability of these materials in buildings. Accordingly, in this study, the performance of four different recycled concrete panels, produced using waste and recycled materials, has been investigated in terms of energy consumption in a residential building using Design-Builder software. Moreover, a model tree algorithm (M5′) has been used to evolve formulas for predicting the total energy consumption in the reference building. To do this, up to 1200 simulations using various recycled materials and glass areas have been carried out in Design-Builder software. The performances of the developed formulas have been evaluated on the basis of statistical measures. The results suggest that M5′ could serve as a valuable tool for the estimation of total energy consumption in residential buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.05.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.05.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Afsarian, F; Saber, A; Pourzangbar, A; Olabi, AG; Khanmohammadi, MA;handle: 11585/908043
Abstract Sustainability targets can be achieved by pursuing environmental-friendly and energy-efficient design and construction. Being sub-standard in terms of stability, buildings would pose serious threats to the environment and natural sources. Therefore, having sustainable design and construction is of great importance in building industry. To achieve sustainability targets, recently recycled aggregates attracted special attention. While several studies have been conducted on the thermal and hydrometric characteristics of recycled materials, there are few studies available on the evaluation of the applicability of these materials in buildings. Accordingly, in this study, the performance of four different recycled concrete panels, produced using waste and recycled materials, has been investigated in terms of energy consumption in a residential building using Design-Builder software. Moreover, a model tree algorithm (M5′) has been used to evolve formulas for predicting the total energy consumption in the reference building. To do this, up to 1200 simulations using various recycled materials and glass areas have been carried out in Design-Builder software. The performances of the developed formulas have been evaluated on the basis of statistical measures. The results suggest that M5′ could serve as a valuable tool for the estimation of total energy consumption in residential buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.05.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.05.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Afsarian, F; Saber, A; Pourzangbar, A; Olabi, AG; Khanmohammadi, MA;handle: 11585/908043
Abstract Sustainability targets can be achieved by pursuing environmental-friendly and energy-efficient design and construction. Being sub-standard in terms of stability, buildings would pose serious threats to the environment and natural sources. Therefore, having sustainable design and construction is of great importance in building industry. To achieve sustainability targets, recently recycled aggregates attracted special attention. While several studies have been conducted on the thermal and hydrometric characteristics of recycled materials, there are few studies available on the evaluation of the applicability of these materials in buildings. Accordingly, in this study, the performance of four different recycled concrete panels, produced using waste and recycled materials, has been investigated in terms of energy consumption in a residential building using Design-Builder software. Moreover, a model tree algorithm (M5′) has been used to evolve formulas for predicting the total energy consumption in the reference building. To do this, up to 1200 simulations using various recycled materials and glass areas have been carried out in Design-Builder software. The performances of the developed formulas have been evaluated on the basis of statistical measures. The results suggest that M5′ could serve as a valuable tool for the estimation of total energy consumption in residential buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.05.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.05.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Afsarian, F; Saber, A; Pourzangbar, A; Olabi, AG; Khanmohammadi, MA;handle: 11585/908043
Abstract Sustainability targets can be achieved by pursuing environmental-friendly and energy-efficient design and construction. Being sub-standard in terms of stability, buildings would pose serious threats to the environment and natural sources. Therefore, having sustainable design and construction is of great importance in building industry. To achieve sustainability targets, recently recycled aggregates attracted special attention. While several studies have been conducted on the thermal and hydrometric characteristics of recycled materials, there are few studies available on the evaluation of the applicability of these materials in buildings. Accordingly, in this study, the performance of four different recycled concrete panels, produced using waste and recycled materials, has been investigated in terms of energy consumption in a residential building using Design-Builder software. Moreover, a model tree algorithm (M5′) has been used to evolve formulas for predicting the total energy consumption in the reference building. To do this, up to 1200 simulations using various recycled materials and glass areas have been carried out in Design-Builder software. The performances of the developed formulas have been evaluated on the basis of statistical measures. The results suggest that M5′ could serve as a valuable tool for the estimation of total energy consumption in residential buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.05.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.05.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu