- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Gerry Wilson; Wallace W. H. Wong; Noel Clark; Junliang Yang; Junliang Yang; Junliang Yang; Jegadesan Subbiah; Doojin Vak; David J. Jones; Scott E. Watkins;Abstract Large-area, flexible organic photovoltaic (OPV) modules are fabricated successfully by gravure printing in air, using an industrial-scale printing proofer of similar performance to commercial roll-to-roll printing processes. Both the hole transport layer, poly-3,4-ethylenedioxy-thiophene:poly(styrene sulfonic-acid) (PEDOT:PSS), and the active layer, poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM), are successively printed on indium tin oxide (ITO) coated polyethylene terephthalate (ITO/PET) substrates with evaporated aluminum (Al) top electrodes. The 45 cm 2 modules, composed of 5 cells connected in series, show power conversion efficiency (PCE) of over 1.0%, in which the short-circuit current ( J sc ) and open-circuit voltage ( V oc ) are as high as 7.14 mA/cm 2 and 2.74 V (0.55 V per cell), respectively. The PCEs could be potentially improved by the further optimization of the layer interface, layer morphology and flexible substrate properties. The results suggest that gravure printing may be a suitable technique for fast commercial processing of large-area, flexible OPVs with high output.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu102 citations 102 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Royal Society of Chemistry (RSC) Munazza Shahid; Nir Yaacobi-Gross; Thomas D. Anthopoulos; Stephan Rossbauer; Martin Heeney; Zhuping Fei; Hongliang Zhong; Scott E. Watkins;doi: 10.1039/c2cc35079c
pmid: 23044933
We report the first synthesis of a tetrafluorinated 4,7-bis(3,4-difluorothiophen-2-yl)-2,1,3-benzothiadiazole monomer and its polymerisation with dithieno[3,2-b:2',3'-d]germole by Stille coupling to afford a low band gap polymer with a high ionisation potential. Direct comparison to the non-fluorinated analogue demonstrates that fluorination results in an increase in ionisation potential with no change in optical band gap, and enhanced aggregation over the non-fluorinated polymer. These desirable properties result in a significant enhancement in OPV device performance in blends with PC(71)BM.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2cc35079c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2cc35079c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:American Chemical Society (ACS) Brandon I. MacDonald; Brandon I. MacDonald; Jacek J. Jasieniak; Paul Mulvaney; Scott E. Watkins;doi: 10.1021/nl201282v
pmid: 21619020
Solar cells made by high temperature and vacuum processes from inorganic semiconductors are at a perceived cost disadvantage when compared with solution-processed systems such as organic and dye-sensitized solar cells. We demonstrate that totally solution processable solar cells can be fabricated from inorganic nanocrystal inks in air at temperature as low as 300 °C. Focusing on a CdTe/ZnO thin-film system, we report solar cells that achieve power conversion efficiencies of 6.9% with greater than 90% internal quantum efficiency. In our approach, nanocrystals are deposited from solution in a layer-by-layer process. Chemical and thermal treatments between layers induce large scale grain formation, turning the 4 nm CdTe particles into pinhole-free films with an optimized average crystallite size of ∼70 nm. Through capacitance-voltage measurements we demonstrate that the CdTe layer is fully depleted which enables the charge carrier collection to be maximized.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl201282v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu174 citations 174 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl201282v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Royal Society of Chemistry (RSC) Ante Bilic; Gavin E. Collis; Scott E. Watkins; Kevin N. Winzenberg; Th. B. Singh; Fiona H. Scholes; Peter Kemppinen; Craig M. Forsyth; Ying Shu;doi: 10.1039/c3cc42293c
pmid: 23739171
A structure-device performance correlation in bulk heterojunction solar cells for new indandione-derived small molecule electron acceptors, FEHIDT and F8IDT, is presented. Devices based on the former exhibit higher power conversion efficiency (2.4%) and higher open circuit voltage, a finding consistent with reduced intermolecular interactions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cc42293c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu110 citations 110 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cc42293c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Elsevier BV David A. Lewis; Scott E. Watkins; Gunther G. Andersson; Anirudh Sharma; Anirudh Sharma;handle: 1959.8/163053
Abstract Organic photovoltaic devices using an electrode of indium tin oxide (ITO) coated with a buffer layer of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) exposed to controlled humidity during fabrication showed a 65–75% decrease in efficiency and displayed S-shaped J–V curves, changes, which are attributed to different levels of indium and tin migration into the PEDOT:PSS film. A distinct shift in the secondary electron cut-off in the UV Photoelectron spectra (UPS) of ITO/PEDOT:PSS samples exposed to controlled humidity indicate an increase of the dipole at the ITO/PEDOT:PSS interface, which could explain the appearance of S-shaped J–V curves. Additionally, the electron density at low binding energies is reduced for the humidity exposed PEDOT:PSS suggesting a second mechanism for decreased device performance.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2011 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2011 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, Netherlands, Netherlands, Netherlands, United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:NSF | International Collaborati...NSF| International Collaboration in Chemistry: Novel Approaches to Molecular Assembly in Polymers for Solar Energy ConversionRumer, Joseph W.; Dai, Sheng-Yao; Levick, Matthew; Kim, Youngju; Madec, Marie-Beatrice; Ashraf, Raja S.; Huang, Zhenggang; Rossbauer, Stephan; Schroeder, Bob; Biniek, Laure; Watkins, Scott E.; Anthopoulos, Thomas D.; Janssen, Rene A. J.; Durrant, James R.; Procter, David J.; Mcculloch, Iain;doi: 10.1039/c3tc30184b
A series of four dihydropyrroloindoledione-based organic semi-conducting polymers are examined for performance in transistor and photovoltaic cell devices. The dihydropyrroloindoledione unit was alternately copolymerized with phenyl, thiophene and bithiophene comonomers, and the resultant polymers exhibit broad absorption, low-bandgaps and deep energy levels, with charge carrier mobilities approaching 0.1 cm2 V-1 s-1. Solar cells processed in a printing friendly solvent (m-xylene) exhibited >2% PCE with a high fill-factor of 0.62 and Voc of 0.75 V.
Hyper Article en Lig... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2013Data sources: The University of Manchester - Institutional RepositoryJournal of Materials Chemistry CArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Journal of Materials Chemistry CArticle . 2013Data sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3tc30184b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2013Data sources: The University of Manchester - Institutional RepositoryJournal of Materials Chemistry CArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Journal of Materials Chemistry CArticle . 2013Data sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3tc30184b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Netherlands, Spain, United KingdomPublisher:Elsevier BV Funded by:EC | HIFLEXEC| HIFLEXGevorgyan, S.A.; Medford, A.J.; Bundgaard, E.; Sapkota, S.B.; Schleiermacher, H.F.; Zimmermann, B.; Würfel, U.; Chafiq, A.; Lira-Cantu, M.; Swonke, T.; Wagner, M.; Brabec, C.J.; Haillant, O.; Voroshazi, E.; Aernouts, T.; Steim, R.; Hauch, J.A.; Elschner, A.; Pannone, M.; Xiao, M.; Langzettel, A.; Laird, D.; Lloyd, M.T.; Rath, T.; Maier, E.; Trimmel, G.; Hermenau, M.; Menke, T.; Leo, K.; Rösch, R.; Seeland, M.; Hoppe, H.; Nagle, T.J.; Burke, K.B.; Fell, C.J.; Vak, D.; Singh, T.B.; Watkins, S.E.; Galagan, Y.O.; Manor, A.; Katz, E.A.; Kim, T.; Kim, K.; Sommeling, P.M.; Verhees, W.J.H.; Veenstra, S.C.; Riede, M.; Greyson Christoforo, M.; Currier, T.; Shrotriya, V.; Schwartz, G.; Krebs, F.C.;handle: 10261/48578
A large number of flexible polymer solar modules comprising 16 serially connected individual cells was prepared at the experimental workshop at Risø DTU. The photoactive layer was prepared from several varieties of P3HT (Merck, Plextronics, BASF and Risø DTU) and two varieties of ZnO (nanoparticulate, thin film) were employed as electron transport layers. The devices were all tested at Risø DTU and the functional devices were subjected to an inter-laboratory study involving the performance and the stability of modules over time in the dark, under light soaking and outdoor conditions. 24 laboratories from 10 countries and across four different continents were involved in the studies. The reported results allowed for analysis of the variability between different groups in performing lifetime studies as well as performing a comparison of different testing procedures. These studies constitute the first steps toward establishing standard procedures for an OPV lifetime characterization. © 2011 Elsevier B.V. All rights reserved.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 134 citations 134 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
visibility 41visibility views 41 download downloads 97 Powered bymore_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Gerry Wilson; Wallace W. H. Wong; Noel Clark; Junliang Yang; Junliang Yang; Junliang Yang; Jegadesan Subbiah; Doojin Vak; David J. Jones; Scott E. Watkins;Abstract Large-area, flexible organic photovoltaic (OPV) modules are fabricated successfully by gravure printing in air, using an industrial-scale printing proofer of similar performance to commercial roll-to-roll printing processes. Both the hole transport layer, poly-3,4-ethylenedioxy-thiophene:poly(styrene sulfonic-acid) (PEDOT:PSS), and the active layer, poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM), are successively printed on indium tin oxide (ITO) coated polyethylene terephthalate (ITO/PET) substrates with evaporated aluminum (Al) top electrodes. The 45 cm 2 modules, composed of 5 cells connected in series, show power conversion efficiency (PCE) of over 1.0%, in which the short-circuit current ( J sc ) and open-circuit voltage ( V oc ) are as high as 7.14 mA/cm 2 and 2.74 V (0.55 V per cell), respectively. The PCEs could be potentially improved by the further optimization of the layer interface, layer morphology and flexible substrate properties. The results suggest that gravure printing may be a suitable technique for fast commercial processing of large-area, flexible OPVs with high output.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu102 citations 102 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Royal Society of Chemistry (RSC) Munazza Shahid; Nir Yaacobi-Gross; Thomas D. Anthopoulos; Stephan Rossbauer; Martin Heeney; Zhuping Fei; Hongliang Zhong; Scott E. Watkins;doi: 10.1039/c2cc35079c
pmid: 23044933
We report the first synthesis of a tetrafluorinated 4,7-bis(3,4-difluorothiophen-2-yl)-2,1,3-benzothiadiazole monomer and its polymerisation with dithieno[3,2-b:2',3'-d]germole by Stille coupling to afford a low band gap polymer with a high ionisation potential. Direct comparison to the non-fluorinated analogue demonstrates that fluorination results in an increase in ionisation potential with no change in optical band gap, and enhanced aggregation over the non-fluorinated polymer. These desirable properties result in a significant enhancement in OPV device performance in blends with PC(71)BM.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2cc35079c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2cc35079c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:American Chemical Society (ACS) Brandon I. MacDonald; Brandon I. MacDonald; Jacek J. Jasieniak; Paul Mulvaney; Scott E. Watkins;doi: 10.1021/nl201282v
pmid: 21619020
Solar cells made by high temperature and vacuum processes from inorganic semiconductors are at a perceived cost disadvantage when compared with solution-processed systems such as organic and dye-sensitized solar cells. We demonstrate that totally solution processable solar cells can be fabricated from inorganic nanocrystal inks in air at temperature as low as 300 °C. Focusing on a CdTe/ZnO thin-film system, we report solar cells that achieve power conversion efficiencies of 6.9% with greater than 90% internal quantum efficiency. In our approach, nanocrystals are deposited from solution in a layer-by-layer process. Chemical and thermal treatments between layers induce large scale grain formation, turning the 4 nm CdTe particles into pinhole-free films with an optimized average crystallite size of ∼70 nm. Through capacitance-voltage measurements we demonstrate that the CdTe layer is fully depleted which enables the charge carrier collection to be maximized.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl201282v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu174 citations 174 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl201282v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Royal Society of Chemistry (RSC) Ante Bilic; Gavin E. Collis; Scott E. Watkins; Kevin N. Winzenberg; Th. B. Singh; Fiona H. Scholes; Peter Kemppinen; Craig M. Forsyth; Ying Shu;doi: 10.1039/c3cc42293c
pmid: 23739171
A structure-device performance correlation in bulk heterojunction solar cells for new indandione-derived small molecule electron acceptors, FEHIDT and F8IDT, is presented. Devices based on the former exhibit higher power conversion efficiency (2.4%) and higher open circuit voltage, a finding consistent with reduced intermolecular interactions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cc42293c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu110 citations 110 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cc42293c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Elsevier BV David A. Lewis; Scott E. Watkins; Gunther G. Andersson; Anirudh Sharma; Anirudh Sharma;handle: 1959.8/163053
Abstract Organic photovoltaic devices using an electrode of indium tin oxide (ITO) coated with a buffer layer of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) exposed to controlled humidity during fabrication showed a 65–75% decrease in efficiency and displayed S-shaped J–V curves, changes, which are attributed to different levels of indium and tin migration into the PEDOT:PSS film. A distinct shift in the secondary electron cut-off in the UV Photoelectron spectra (UPS) of ITO/PEDOT:PSS samples exposed to controlled humidity indicate an increase of the dipole at the ITO/PEDOT:PSS interface, which could explain the appearance of S-shaped J–V curves. Additionally, the electron density at low binding energies is reduced for the humidity exposed PEDOT:PSS suggesting a second mechanism for decreased device performance.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2011 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2011 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, Netherlands, Netherlands, Netherlands, United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:NSF | International Collaborati...NSF| International Collaboration in Chemistry: Novel Approaches to Molecular Assembly in Polymers for Solar Energy ConversionRumer, Joseph W.; Dai, Sheng-Yao; Levick, Matthew; Kim, Youngju; Madec, Marie-Beatrice; Ashraf, Raja S.; Huang, Zhenggang; Rossbauer, Stephan; Schroeder, Bob; Biniek, Laure; Watkins, Scott E.; Anthopoulos, Thomas D.; Janssen, Rene A. J.; Durrant, James R.; Procter, David J.; Mcculloch, Iain;doi: 10.1039/c3tc30184b
A series of four dihydropyrroloindoledione-based organic semi-conducting polymers are examined for performance in transistor and photovoltaic cell devices. The dihydropyrroloindoledione unit was alternately copolymerized with phenyl, thiophene and bithiophene comonomers, and the resultant polymers exhibit broad absorption, low-bandgaps and deep energy levels, with charge carrier mobilities approaching 0.1 cm2 V-1 s-1. Solar cells processed in a printing friendly solvent (m-xylene) exhibited >2% PCE with a high fill-factor of 0.62 and Voc of 0.75 V.
Hyper Article en Lig... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2013Data sources: The University of Manchester - Institutional RepositoryJournal of Materials Chemistry CArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Journal of Materials Chemistry CArticle . 2013Data sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3tc30184b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2013Data sources: The University of Manchester - Institutional RepositoryJournal of Materials Chemistry CArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Journal of Materials Chemistry CArticle . 2013Data sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3tc30184b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Netherlands, Spain, United KingdomPublisher:Elsevier BV Funded by:EC | HIFLEXEC| HIFLEXGevorgyan, S.A.; Medford, A.J.; Bundgaard, E.; Sapkota, S.B.; Schleiermacher, H.F.; Zimmermann, B.; Würfel, U.; Chafiq, A.; Lira-Cantu, M.; Swonke, T.; Wagner, M.; Brabec, C.J.; Haillant, O.; Voroshazi, E.; Aernouts, T.; Steim, R.; Hauch, J.A.; Elschner, A.; Pannone, M.; Xiao, M.; Langzettel, A.; Laird, D.; Lloyd, M.T.; Rath, T.; Maier, E.; Trimmel, G.; Hermenau, M.; Menke, T.; Leo, K.; Rösch, R.; Seeland, M.; Hoppe, H.; Nagle, T.J.; Burke, K.B.; Fell, C.J.; Vak, D.; Singh, T.B.; Watkins, S.E.; Galagan, Y.O.; Manor, A.; Katz, E.A.; Kim, T.; Kim, K.; Sommeling, P.M.; Verhees, W.J.H.; Veenstra, S.C.; Riede, M.; Greyson Christoforo, M.; Currier, T.; Shrotriya, V.; Schwartz, G.; Krebs, F.C.;handle: 10261/48578
A large number of flexible polymer solar modules comprising 16 serially connected individual cells was prepared at the experimental workshop at Risø DTU. The photoactive layer was prepared from several varieties of P3HT (Merck, Plextronics, BASF and Risø DTU) and two varieties of ZnO (nanoparticulate, thin film) were employed as electron transport layers. The devices were all tested at Risø DTU and the functional devices were subjected to an inter-laboratory study involving the performance and the stability of modules over time in the dark, under light soaking and outdoor conditions. 24 laboratories from 10 countries and across four different continents were involved in the studies. The reported results allowed for analysis of the variability between different groups in performing lifetime studies as well as performing a comparison of different testing procedures. These studies constitute the first steps toward establishing standard procedures for an OPV lifetime characterization. © 2011 Elsevier B.V. All rights reserved.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 134 citations 134 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
visibility 41visibility views 41 download downloads 97 Powered bymore_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu