- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Abhishek Mani Tripathi; Karel Klem; Milan Fischer; Matej Orság; Miroslav Trnka; Michal V. Marek;Abstract We analyzed the effect of manipulated water availability on an accumulation of nutrients and metals, their stoichiometry, and allocation to roots or leaves in a short rotation coppice (SRC) poplar plantation. The aim of this study was also to clarify how these changes are related to the effects of drought on growth parameters. This study was conducted in Domaninek, Czech Republic in an SRC poplar clone J-105 (Populus nigra L. × P. Maximowiczii H.). This plantation was established as an uncoppiced (single stem) and later on converted into multi-stem (coppice). A rain-out shelter experiment (reduced throughfall) was established in the second year of coppice and the drought stress (DS) applied for 3 years. Water availability altered the accumulation and allocation of nutrients and metals in above and belowground biomass. Reduced water availability led, in particular, to the significantly lower accumulation of potassium (K) in both leaves and roots and a higher carbon (C) to potassium (K) ratio (C:K) in leaves. The significant decline of zinc (Zn) was also found in roots under reduced throughfall. Reduced water availability led to increased accumulation of cadmium (Cd) in leaves and decreased accumulation in roots. This resulted in significantly lower root:leaf ratio for Cd content. An opposite response was found for the allocation of copper (Cu). We also demonstrated that major changes in accumulation and allocation are associated with changes in growth. The results indicated that such knowledge may contribute to understanding the role of nutrient uptake and translocation in acclimation to DS and it may help in developing phytoextraction methods on contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.06.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.06.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Czech Republic, IrelandPublisher:Wiley Publicly fundedFunded by:SFI | Exploiting narrow-band UV...SFI| Exploiting narrow-band UV-LEDs for Sustainable, Innovative, Technology-Enabled Cropping (UV-SINTEC)Authors: Marcel A. K. Jansen; Alexander Ač; Karel Klem; Otmar Urban;AbstractInteractions between climate change and UV penetration in the biosphere are resulting in the exposure of plants to new combinations of UV radiation and drought. In theory, the impacts of combinations of UV and drought may be additive, synergistic or antagonistic. Lack of understanding of the impacts of combined treatments creates substantial uncertainties that hamper predictions of future ecological change. Here, we compiled information from 52 publications and analysed the relative impacts of UV and/or drought. Both UV and drought have substantial negative effects on biomass accumulation, plant height, photosynthesis, leaf area and stomatal conductance and transpiration, while increasing stress‐associated symptoms such as MDA accumulation and reactive‐oxygen‐species content. Contents of proline, flavonoids, antioxidants and anthocyanins, associated with plant acclimation, are upregulated both under enhanced UV and drought. In plants exposed to both UV and drought, increases in plant defense responses are less‐than‐additive, and so are the damage and growth retardation. Less‐than‐additive effects were observed across field, glasshouse and growth‐chamber studies, indicating similar physiological response mechanisms. Induction of a degree of cross‐resistance seems the most likely interpretation of the observed less‐than‐additive responses. The data show that in future climates, the impacts of increases in drought exposure may be lessened by naturally high UV regimes.
Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPlant Cell & EnvironmentArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.14221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 33 citations 33 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPlant Cell & EnvironmentArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.14221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Kojo Kwakye Ofori-Amanfo; Karel Klem; Barbora Veselá; Petr Holub; Thomas Agyei; Michal V. Marek; John Grace; Otmar Urban;doi: 10.3390/f12010042
We investigated how reduced summer precipitation modifies photosynthetic responses of two model tree species—coniferous Norway spruce and broadleaved sessile oak—to changes in atmospheric CO2 concentration. Saplings were grown under mountainous conditions for two growing seasons at ambient (400 μmol CO2 mol–1) and elevated (700 μmol CO2 mol–1) CO2 concentration. Half were not exposed to precipitation during the summer (June–August). After two seasons of cultivation under modified conditions, basic photosynthetic characteristics including light-saturated rate of CO2 assimilation (Amax), stomatal conductance (GSmax), and water use efficiency (WUE) were measured under their growth CO2 concentrations together with in vivo carboxylation rate (VC) and electron transport rate (J) derived from CO2-response curves at saturating light. An increase in Amax under elevated CO2 was observed in oak saplings, whereas it remained unchanged or slightly declined in Norway spruce, indicating a down-regulation of photosynthesis. Such acclimation was associated with an acclimation of both J and VC. Both species had increased WUE under elevated CO2 although, in well-watered oaks, WUE remained unchanged. Significant interactive effects of tree species, CO2 concentration, and water availability on gas-exchange parameters (Amax, GSmax, WUE) were observed, while there was no effect on biochemical (VC, J) and chlorophyll fluorescence parameters. The assimilation capacity (Asat; CO2 assimilation rate at saturating light intensity and CO2 concentration) was substantially reduced in spruce under the combined conditions of water deficiency and elevated CO2, but not in oak. In addition, the stimulatory effect of elevated CO2 on Amax persisted in oak, but completely diminished in water-limited spruce saplings. Our results suggest a strong species-specific response of trees to reduced summer precipitation under future conditions of elevated CO2 and a limited compensatory effect of elevated CO2 on CO2 uptake under water-limited conditions in coniferous spruce.
Forests arrow_drop_down ForestsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/1/42/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12010042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/1/42/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12010042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Belgium, Austria, France, Austria, Spain, AustriaPublisher:MDPI AG Funded by:EC | REWIRE, EC | IMBALANCE-PEC| REWIRE ,EC| IMBALANCE-PAuthors: Gargallo-Garriga, Albert; Sardans, Jordi; Alrefaei, Abdulwahed Fahad; Klem, Karel; +9 AuthorsGargallo-Garriga, Albert; Sardans, Jordi; Alrefaei, Abdulwahed Fahad; Klem, Karel; Fuchslueger, Lucia; Ramírez-Rojas, Irene; Donald, Julian; Leroy, Celine; Langenhove, Leandro Van; Verbruggen, Erik; Janssens, Ivan A.; Urban, Otmar; Peñuelas, Josep;Tropical forests are biodiversity hotspots, but it is not well understood how this diversity is structured and maintained. One hypothesis rests on the generation of a range of metabolic niches, with varied composition, supporting a high species diversity. Characterizing soil metabolomes can reveal fine-scale differences in composition and potentially help explain variation across these habitats. In particular, little is known about canopy soils, which are unique habitats that are likely to be sources of additional biodiversity and biogeochemical cycling in tropical forests. We studied the effects of diverse tree species and epiphytes on soil metabolomic profiles of forest floor and canopy suspended soils in a French Guianese rainforest. We found that the metabolomic profiles of canopy suspended soils were distinct from those of forest floor soils, differing between epiphyte-associated and non-epiphyte suspended soils, and the metabolomic profiles of suspended soils varied with host tree species, regardless of association with epiphyte. Thus, tree species is a key driver of rainforest suspended soil metabolomics. We found greater abundance of metabolites in suspended soils, particularly in groups associated with plants, such as phenolic compounds, and with metabolic pathways related to amino acids, nucleotides, and energy metabolism, due to the greater relative proportion of tree and epiphyte organic material derived from litter and root exudates, indicating a strong legacy of parent biological material. Our study provides evidence for the role of tree and epiphyte species in canopy soil metabolomic composition and in maintaining the high levels of soil metabolome diversity in this tropical rainforest. It is likely that a wide array of canopy microsite-level environmental conditions, which reflect interactions between trees and epiphytes, increase the microscale diversity in suspended soil metabolomes.
Metabolites arrow_drop_down MetabolitesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2218-1989/11/11/718/pdfData sources: Multidisciplinary Digital Publishing InstituteMetabolitesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2218-1989/11/11/718/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03409203Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABPermanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2021License: CC BYInstitutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/metabo11110718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Metabolites arrow_drop_down MetabolitesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2218-1989/11/11/718/pdfData sources: Multidisciplinary Digital Publishing InstituteMetabolitesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2218-1989/11/11/718/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03409203Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABPermanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2021License: CC BYInstitutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/metabo11110718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 27 Nov 2019 United Kingdom, Germany, United Kingdom, AustriaPublisher:American Association for the Advancement of Science (AAAS) Trnka, Miroslav; Feng, Song; Semenov, Mikhail A; Olesen, Jørgen E; Kersebaum, Kurt Christian; Rötter, Reimund P; Semerádová, Daniela; Klem, Karel; Huang, Wei; Ruiz-Ramos, Margarita; Hlavinka, Petr; Meitner, Jan; Balek, Jan; Havlík, Petr; Büntgen, Ulf;The risk of severe water scarcity events simultaneously affecting key wheat-producing areas doubles despite CO 2 mitigation efforts.
IIASA DARE arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedGöttingen Research Online PublicationsArticle . 2020License: CC BY NCData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aau2406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 127 citations 127 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedGöttingen Research Online PublicationsArticle . 2020License: CC BY NCData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aau2406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Abhishek Tripathi; Eva Pohanková; Milan Fischer; Matěj Orság; Miroslav Trnka; Karel Klem; Michal Marek;doi: 10.3390/f9040168
We evaluated the long-term pattern of leaf area index (LAI) dynamics and radiation use efficiency (RUE) in short rotation poplar in uncoppice (single stem) and coppice (multi-stem) plantations, and compared them to annual field crops (AFCs) as an alternative for bioenergy production while being more sensitive to weather fluctuation and climate change. The aim of this study was to evaluate the potential of LAI and RUE as indicators for bioenergy production and indicators of response to changing environmental conditions. For this study, we selected poplar clone J-105 (Populus nigra L. × P. maximowiczii A. Henry) and AFCs such as barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), maize (Zea mays L.), and oilseed rape (Brassica napus L.), and compared their aboveground dry mass (AGDM) production in relation to their LAI development and RUE. The results of the study showed the long-term maximum LAI (LAImax) to be 9.5 in coppice poplar when compared to AFCs, where LAImax did not exceed the value 6. The RUE varied between 1.02 and 1.48 g MJ−1 in short rotation poplar and between 0.72 and 2.06 g MJ−1 in AFCs. We found both LAI and RUE contributed to AGDM production in short rotation poplar and RUE only contributed in AFCs. The study confirms that RUE may be considered an AGDM predictor of short rotation poplar and AFCs. This may be utilized for empirical estimates of yields and also contribute to improve the models of short rotation poplar and AFCs for the precise prediction of biomass accumulation in different environmental conditions.
Forests arrow_drop_down ForestsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1999-4907/9/4/168/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f9040168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1999-4907/9/4/168/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f9040168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type 2024 Czech RepublicPublisher:Frontiers Media SA Emmanuel Opoku; Emmanuel Opoku; Pranav Pankaj Sahu; Hana Findurová; Hana Findurová; Petr Holub; Otmar Urban; Karel Klem; Karel Klem;pmid: 38371407
pmc: PMC10869619
This study examined the effect of the interactions of key factors associated with predicted climate change (increased temperature, and drought) and elevated CO2 concentration on C3 and C4 crop representatives, barley and sorghum. The effect of two levels of atmospheric CO2 concentration (400 and 800 ppm), three levels of temperature regime (21/7, 26/12 and 33/19°C) and two regimes of water availability (simulation of drought by gradual reduction of irrigation and well-watered control) in all combinations was investigated in a pot experiment within growth chambers for barley variety Bojos and sorghum variety Ruby. Due to differences in photosynthetic metabolism in C3 barley and C4 sorghum, leading to different responses to elevated CO2 concentration, we hypothesized mitigation of the negative drought impact in barley under elevated CO2 concentration and, conversely, improved performance of sorghum at high temperatures. The results demonstrate the decoupling of photosynthetic CO2 assimilation and production parameters in sorghum. High temperatures and elevated CO2 concentration resulted in a significant increase in sorghum above- and below-ground biomass under sufficient water availability despite the enhanced sensitivity of photosynthesis to high temperatures. However, the negative effect of drought is amplified by the effect of high temperature, similarly for biomass and photosynthetic rates. Sorghum also showed a mitigating effect of elevated CO2 concentration on the negative drought impact, particularly in reducing the decrease of relative water content in leaves. In barley, no significant factor interactions were observed, indicating the absence of mitigating the negative drought effects by elevated CO2 concentration. These complex interactions imply that, unlike barley, sorghum can be predicted to have a much higher variability in response to climate change. However, under conditions combining elevated CO2 concentration, high temperature, and sufficient water availability, the outperforming of C4 crops can be expected. On the contrary, the C3 crops can be expected to perform even better under drought conditions when accompanied by lower temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1345462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1345462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Czech RepublicPublisher:Wiley Petr Šmarda; Karel Klem; Ondřej Knápek; Barbora Veselá; Kristýna Veselá; Petr Holub; Vít Kuchař; Alexandra Šilerová; Lucie Horová; Petr Bureš;doi: 10.1111/nph.18955
pmid: 37167007
SummaryPolyploidy plays an important role in plant evolution, but knowledge of its eco‐physiological consequences, such as of the putatively enlarged stomata of polyploid plants, remains limited. Enlarged stomata should disadvantage polyploids at low CO2concentrations (namely during the Quaternary glacial periods) because larger stomata are viewed as less effective at CO2uptake.We observed the growth, physiology, and epidermal cell features of 15 diploids and their polyploid relatives cultivated under glacial, present‐day, and potential future atmospheric CO2concentrations (200, 400, and 800 ppm respectively).We demonstrated some well‐known polyploidy effects, such as faster growth and larger leaves, seeds, stomata, and other epidermal cells. The stomata of polyploids, however, tended to be more elongated than those of diploids, and contrary to common belief, they had no negative effect on the CO2uptake capacity of polyploids. Moreover, polyploids grew comparatively better than diploids even at low, glacial CO2concentrations. Higher polyploids with large genomes also showed increased operational stomatal conductance and consequently, a lower water‐use efficiency.Our results point to a possible decrease in growth superiority of polyploids over diploids in a current and future high CO2climatic scenarios, as well as the possible water and/or nutrient dependency of higher polyploids.
New Phytologist arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Tereza Uchytilová; Jan Krejza; Barbora Veselá; Petr Holub; Otmar Urban; Petr Horáček; Karel Klem;pmid: 30097290
Under the conditions of ongoing climate change, terrestrial ecosystems will be simultaneously exposed to a permanent rise in atmospheric CO2 concentration and increasing variability of such environmental factors as temperature, precipitation, and UV radiation. This will result in numerous interactions. The interactive effects caused by exposure to such multiple environmental factors are not yet well understood. We tested the hypotheses that enhanced UV radiation reduces the stimulatory effect of elevated CO2 concentration on plant biomass production and that it alters biomass allocation in broadleaved European beech (Fagus sylvatica L.) saplings. Our results after 2 years of exposure confirmed interactive effects of CO2 concentration and UV radiation on biomass production, and particularly on biomass allocation to roots and aboveground biomass. The strongest stimulatory effect of elevated CO2 on aboveground biomass and roots was found under ambient UV radiation, while both low and high UV doses reduced this stimulation. Nitrogen content in the roots and the distribution of nitrogen among leaves and roots were also significantly affected by interaction of CO2 concentration and UV radiation. The observed changes in leaf and root C:N stoichiometry were associated with altered morphological traits, and particularly with a change in the proportion of fine roots. As the biomass allocation and especially the proportion of fine roots can play an important role in effective water and nutrient use and acclimation to future climates, it is essential to obtain a deeper understanding of the links between C:N stoichiometry and biomass accumulation.
Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2018.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2018.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV K. Michalec; Otmar Urban; Karel Klem; Petr Vítek; Marek Pająk; Radosław Wąsik; Marcin Pietrzykowski;pmid: 33601261
An understanding of the structural organisation and chemistry of the cell walls in woody tissues is crucial from the perspective of plant mechanical strength, water transportability, as well as subsequent commercial utilisation of the wood. Poplar trees (Populus sp.), grown on two reclamation substrates ("Humus" and "Sand") under the extreme soil conditions of an external coal mining spoil heap of the lignite mine in Bełchatów (Central Poland), were examined. Conventional parameters - tree-ring width (TRW) and wood density (WD) resolved annually (years 2008-2017) were corroborated by a novel approach of Raman spectroscopic analysis. Annually resolved Raman spectroscopic data representing the lignin-to-cellulose ratio (Li/Ce) enabled to estimate trends of lignification. The above traits were obtained for the three poplar genotypes: H-275, Grandis, and Androscoggin to assess the suitability of their plantation on the reclaimed heap. Our results show a significant effect of genotype on TRW, WD, and the Raman Li/Ce, while the effect of the soil substrate was less pronounced. The highest Li/Ce was identified in the H-275 genotype grown on a substrate with hummus. H-275 also showed higher TRW values compared to the other genotypes. WD was significantly higher in Grandis and Androscoggin genotypes grown on the "Sand" substrate. Associations between tree-ring parameters and climatic variables (temperature and precipitation) were mostly low and not statistically significant. Our findings from individual tree rings indicate that the genotype is the crucial factor influencing the lignification of poplar trees grown on post-mining lands.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Abhishek Mani Tripathi; Karel Klem; Milan Fischer; Matej Orság; Miroslav Trnka; Michal V. Marek;Abstract We analyzed the effect of manipulated water availability on an accumulation of nutrients and metals, their stoichiometry, and allocation to roots or leaves in a short rotation coppice (SRC) poplar plantation. The aim of this study was also to clarify how these changes are related to the effects of drought on growth parameters. This study was conducted in Domaninek, Czech Republic in an SRC poplar clone J-105 (Populus nigra L. × P. Maximowiczii H.). This plantation was established as an uncoppiced (single stem) and later on converted into multi-stem (coppice). A rain-out shelter experiment (reduced throughfall) was established in the second year of coppice and the drought stress (DS) applied for 3 years. Water availability altered the accumulation and allocation of nutrients and metals in above and belowground biomass. Reduced water availability led, in particular, to the significantly lower accumulation of potassium (K) in both leaves and roots and a higher carbon (C) to potassium (K) ratio (C:K) in leaves. The significant decline of zinc (Zn) was also found in roots under reduced throughfall. Reduced water availability led to increased accumulation of cadmium (Cd) in leaves and decreased accumulation in roots. This resulted in significantly lower root:leaf ratio for Cd content. An opposite response was found for the allocation of copper (Cu). We also demonstrated that major changes in accumulation and allocation are associated with changes in growth. The results indicated that such knowledge may contribute to understanding the role of nutrient uptake and translocation in acclimation to DS and it may help in developing phytoextraction methods on contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.06.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.06.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Czech Republic, IrelandPublisher:Wiley Publicly fundedFunded by:SFI | Exploiting narrow-band UV...SFI| Exploiting narrow-band UV-LEDs for Sustainable, Innovative, Technology-Enabled Cropping (UV-SINTEC)Authors: Marcel A. K. Jansen; Alexander Ač; Karel Klem; Otmar Urban;AbstractInteractions between climate change and UV penetration in the biosphere are resulting in the exposure of plants to new combinations of UV radiation and drought. In theory, the impacts of combinations of UV and drought may be additive, synergistic or antagonistic. Lack of understanding of the impacts of combined treatments creates substantial uncertainties that hamper predictions of future ecological change. Here, we compiled information from 52 publications and analysed the relative impacts of UV and/or drought. Both UV and drought have substantial negative effects on biomass accumulation, plant height, photosynthesis, leaf area and stomatal conductance and transpiration, while increasing stress‐associated symptoms such as MDA accumulation and reactive‐oxygen‐species content. Contents of proline, flavonoids, antioxidants and anthocyanins, associated with plant acclimation, are upregulated both under enhanced UV and drought. In plants exposed to both UV and drought, increases in plant defense responses are less‐than‐additive, and so are the damage and growth retardation. Less‐than‐additive effects were observed across field, glasshouse and growth‐chamber studies, indicating similar physiological response mechanisms. Induction of a degree of cross‐resistance seems the most likely interpretation of the observed less‐than‐additive responses. The data show that in future climates, the impacts of increases in drought exposure may be lessened by naturally high UV regimes.
Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPlant Cell & EnvironmentArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.14221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 33 citations 33 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPlant Cell & EnvironmentArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.14221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Kojo Kwakye Ofori-Amanfo; Karel Klem; Barbora Veselá; Petr Holub; Thomas Agyei; Michal V. Marek; John Grace; Otmar Urban;doi: 10.3390/f12010042
We investigated how reduced summer precipitation modifies photosynthetic responses of two model tree species—coniferous Norway spruce and broadleaved sessile oak—to changes in atmospheric CO2 concentration. Saplings were grown under mountainous conditions for two growing seasons at ambient (400 μmol CO2 mol–1) and elevated (700 μmol CO2 mol–1) CO2 concentration. Half were not exposed to precipitation during the summer (June–August). After two seasons of cultivation under modified conditions, basic photosynthetic characteristics including light-saturated rate of CO2 assimilation (Amax), stomatal conductance (GSmax), and water use efficiency (WUE) were measured under their growth CO2 concentrations together with in vivo carboxylation rate (VC) and electron transport rate (J) derived from CO2-response curves at saturating light. An increase in Amax under elevated CO2 was observed in oak saplings, whereas it remained unchanged or slightly declined in Norway spruce, indicating a down-regulation of photosynthesis. Such acclimation was associated with an acclimation of both J and VC. Both species had increased WUE under elevated CO2 although, in well-watered oaks, WUE remained unchanged. Significant interactive effects of tree species, CO2 concentration, and water availability on gas-exchange parameters (Amax, GSmax, WUE) were observed, while there was no effect on biochemical (VC, J) and chlorophyll fluorescence parameters. The assimilation capacity (Asat; CO2 assimilation rate at saturating light intensity and CO2 concentration) was substantially reduced in spruce under the combined conditions of water deficiency and elevated CO2, but not in oak. In addition, the stimulatory effect of elevated CO2 on Amax persisted in oak, but completely diminished in water-limited spruce saplings. Our results suggest a strong species-specific response of trees to reduced summer precipitation under future conditions of elevated CO2 and a limited compensatory effect of elevated CO2 on CO2 uptake under water-limited conditions in coniferous spruce.
Forests arrow_drop_down ForestsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/1/42/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12010042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/1/42/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12010042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Belgium, Austria, France, Austria, Spain, AustriaPublisher:MDPI AG Funded by:EC | REWIRE, EC | IMBALANCE-PEC| REWIRE ,EC| IMBALANCE-PAuthors: Gargallo-Garriga, Albert; Sardans, Jordi; Alrefaei, Abdulwahed Fahad; Klem, Karel; +9 AuthorsGargallo-Garriga, Albert; Sardans, Jordi; Alrefaei, Abdulwahed Fahad; Klem, Karel; Fuchslueger, Lucia; Ramírez-Rojas, Irene; Donald, Julian; Leroy, Celine; Langenhove, Leandro Van; Verbruggen, Erik; Janssens, Ivan A.; Urban, Otmar; Peñuelas, Josep;Tropical forests are biodiversity hotspots, but it is not well understood how this diversity is structured and maintained. One hypothesis rests on the generation of a range of metabolic niches, with varied composition, supporting a high species diversity. Characterizing soil metabolomes can reveal fine-scale differences in composition and potentially help explain variation across these habitats. In particular, little is known about canopy soils, which are unique habitats that are likely to be sources of additional biodiversity and biogeochemical cycling in tropical forests. We studied the effects of diverse tree species and epiphytes on soil metabolomic profiles of forest floor and canopy suspended soils in a French Guianese rainforest. We found that the metabolomic profiles of canopy suspended soils were distinct from those of forest floor soils, differing between epiphyte-associated and non-epiphyte suspended soils, and the metabolomic profiles of suspended soils varied with host tree species, regardless of association with epiphyte. Thus, tree species is a key driver of rainforest suspended soil metabolomics. We found greater abundance of metabolites in suspended soils, particularly in groups associated with plants, such as phenolic compounds, and with metabolic pathways related to amino acids, nucleotides, and energy metabolism, due to the greater relative proportion of tree and epiphyte organic material derived from litter and root exudates, indicating a strong legacy of parent biological material. Our study provides evidence for the role of tree and epiphyte species in canopy soil metabolomic composition and in maintaining the high levels of soil metabolome diversity in this tropical rainforest. It is likely that a wide array of canopy microsite-level environmental conditions, which reflect interactions between trees and epiphytes, increase the microscale diversity in suspended soil metabolomes.
Metabolites arrow_drop_down MetabolitesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2218-1989/11/11/718/pdfData sources: Multidisciplinary Digital Publishing InstituteMetabolitesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2218-1989/11/11/718/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03409203Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABPermanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2021License: CC BYInstitutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/metabo11110718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Metabolites arrow_drop_down MetabolitesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2218-1989/11/11/718/pdfData sources: Multidisciplinary Digital Publishing InstituteMetabolitesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2218-1989/11/11/718/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03409203Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021License: CC BYData sources: Diposit Digital de Documents de la UABPermanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2021License: CC BYInstitutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/metabo11110718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 27 Nov 2019 United Kingdom, Germany, United Kingdom, AustriaPublisher:American Association for the Advancement of Science (AAAS) Trnka, Miroslav; Feng, Song; Semenov, Mikhail A; Olesen, Jørgen E; Kersebaum, Kurt Christian; Rötter, Reimund P; Semerádová, Daniela; Klem, Karel; Huang, Wei; Ruiz-Ramos, Margarita; Hlavinka, Petr; Meitner, Jan; Balek, Jan; Havlík, Petr; Büntgen, Ulf;The risk of severe water scarcity events simultaneously affecting key wheat-producing areas doubles despite CO 2 mitigation efforts.
IIASA DARE arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedGöttingen Research Online PublicationsArticle . 2020License: CC BY NCData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aau2406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 127 citations 127 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedGöttingen Research Online PublicationsArticle . 2020License: CC BY NCData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aau2406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Abhishek Tripathi; Eva Pohanková; Milan Fischer; Matěj Orság; Miroslav Trnka; Karel Klem; Michal Marek;doi: 10.3390/f9040168
We evaluated the long-term pattern of leaf area index (LAI) dynamics and radiation use efficiency (RUE) in short rotation poplar in uncoppice (single stem) and coppice (multi-stem) plantations, and compared them to annual field crops (AFCs) as an alternative for bioenergy production while being more sensitive to weather fluctuation and climate change. The aim of this study was to evaluate the potential of LAI and RUE as indicators for bioenergy production and indicators of response to changing environmental conditions. For this study, we selected poplar clone J-105 (Populus nigra L. × P. maximowiczii A. Henry) and AFCs such as barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), maize (Zea mays L.), and oilseed rape (Brassica napus L.), and compared their aboveground dry mass (AGDM) production in relation to their LAI development and RUE. The results of the study showed the long-term maximum LAI (LAImax) to be 9.5 in coppice poplar when compared to AFCs, where LAImax did not exceed the value 6. The RUE varied between 1.02 and 1.48 g MJ−1 in short rotation poplar and between 0.72 and 2.06 g MJ−1 in AFCs. We found both LAI and RUE contributed to AGDM production in short rotation poplar and RUE only contributed in AFCs. The study confirms that RUE may be considered an AGDM predictor of short rotation poplar and AFCs. This may be utilized for empirical estimates of yields and also contribute to improve the models of short rotation poplar and AFCs for the precise prediction of biomass accumulation in different environmental conditions.
Forests arrow_drop_down ForestsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1999-4907/9/4/168/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f9040168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1999-4907/9/4/168/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f9040168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type 2024 Czech RepublicPublisher:Frontiers Media SA Emmanuel Opoku; Emmanuel Opoku; Pranav Pankaj Sahu; Hana Findurová; Hana Findurová; Petr Holub; Otmar Urban; Karel Klem; Karel Klem;pmid: 38371407
pmc: PMC10869619
This study examined the effect of the interactions of key factors associated with predicted climate change (increased temperature, and drought) and elevated CO2 concentration on C3 and C4 crop representatives, barley and sorghum. The effect of two levels of atmospheric CO2 concentration (400 and 800 ppm), three levels of temperature regime (21/7, 26/12 and 33/19°C) and two regimes of water availability (simulation of drought by gradual reduction of irrigation and well-watered control) in all combinations was investigated in a pot experiment within growth chambers for barley variety Bojos and sorghum variety Ruby. Due to differences in photosynthetic metabolism in C3 barley and C4 sorghum, leading to different responses to elevated CO2 concentration, we hypothesized mitigation of the negative drought impact in barley under elevated CO2 concentration and, conversely, improved performance of sorghum at high temperatures. The results demonstrate the decoupling of photosynthetic CO2 assimilation and production parameters in sorghum. High temperatures and elevated CO2 concentration resulted in a significant increase in sorghum above- and below-ground biomass under sufficient water availability despite the enhanced sensitivity of photosynthesis to high temperatures. However, the negative effect of drought is amplified by the effect of high temperature, similarly for biomass and photosynthetic rates. Sorghum also showed a mitigating effect of elevated CO2 concentration on the negative drought impact, particularly in reducing the decrease of relative water content in leaves. In barley, no significant factor interactions were observed, indicating the absence of mitigating the negative drought effects by elevated CO2 concentration. These complex interactions imply that, unlike barley, sorghum can be predicted to have a much higher variability in response to climate change. However, under conditions combining elevated CO2 concentration, high temperature, and sufficient water availability, the outperforming of C4 crops can be expected. On the contrary, the C3 crops can be expected to perform even better under drought conditions when accompanied by lower temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1345462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1345462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Czech RepublicPublisher:Wiley Petr Šmarda; Karel Klem; Ondřej Knápek; Barbora Veselá; Kristýna Veselá; Petr Holub; Vít Kuchař; Alexandra Šilerová; Lucie Horová; Petr Bureš;doi: 10.1111/nph.18955
pmid: 37167007
SummaryPolyploidy plays an important role in plant evolution, but knowledge of its eco‐physiological consequences, such as of the putatively enlarged stomata of polyploid plants, remains limited. Enlarged stomata should disadvantage polyploids at low CO2concentrations (namely during the Quaternary glacial periods) because larger stomata are viewed as less effective at CO2uptake.We observed the growth, physiology, and epidermal cell features of 15 diploids and their polyploid relatives cultivated under glacial, present‐day, and potential future atmospheric CO2concentrations (200, 400, and 800 ppm respectively).We demonstrated some well‐known polyploidy effects, such as faster growth and larger leaves, seeds, stomata, and other epidermal cells. The stomata of polyploids, however, tended to be more elongated than those of diploids, and contrary to common belief, they had no negative effect on the CO2uptake capacity of polyploids. Moreover, polyploids grew comparatively better than diploids even at low, glacial CO2concentrations. Higher polyploids with large genomes also showed increased operational stomatal conductance and consequently, a lower water‐use efficiency.Our results point to a possible decrease in growth superiority of polyploids over diploids in a current and future high CO2climatic scenarios, as well as the possible water and/or nutrient dependency of higher polyploids.
New Phytologist arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Tereza Uchytilová; Jan Krejza; Barbora Veselá; Petr Holub; Otmar Urban; Petr Horáček; Karel Klem;pmid: 30097290
Under the conditions of ongoing climate change, terrestrial ecosystems will be simultaneously exposed to a permanent rise in atmospheric CO2 concentration and increasing variability of such environmental factors as temperature, precipitation, and UV radiation. This will result in numerous interactions. The interactive effects caused by exposure to such multiple environmental factors are not yet well understood. We tested the hypotheses that enhanced UV radiation reduces the stimulatory effect of elevated CO2 concentration on plant biomass production and that it alters biomass allocation in broadleaved European beech (Fagus sylvatica L.) saplings. Our results after 2 years of exposure confirmed interactive effects of CO2 concentration and UV radiation on biomass production, and particularly on biomass allocation to roots and aboveground biomass. The strongest stimulatory effect of elevated CO2 on aboveground biomass and roots was found under ambient UV radiation, while both low and high UV doses reduced this stimulation. Nitrogen content in the roots and the distribution of nitrogen among leaves and roots were also significantly affected by interaction of CO2 concentration and UV radiation. The observed changes in leaf and root C:N stoichiometry were associated with altered morphological traits, and particularly with a change in the proportion of fine roots. As the biomass allocation and especially the proportion of fine roots can play an important role in effective water and nutrient use and acclimation to future climates, it is essential to obtain a deeper understanding of the links between C:N stoichiometry and biomass accumulation.
Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2018.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2018.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV K. Michalec; Otmar Urban; Karel Klem; Petr Vítek; Marek Pająk; Radosław Wąsik; Marcin Pietrzykowski;pmid: 33601261
An understanding of the structural organisation and chemistry of the cell walls in woody tissues is crucial from the perspective of plant mechanical strength, water transportability, as well as subsequent commercial utilisation of the wood. Poplar trees (Populus sp.), grown on two reclamation substrates ("Humus" and "Sand") under the extreme soil conditions of an external coal mining spoil heap of the lignite mine in Bełchatów (Central Poland), were examined. Conventional parameters - tree-ring width (TRW) and wood density (WD) resolved annually (years 2008-2017) were corroborated by a novel approach of Raman spectroscopic analysis. Annually resolved Raman spectroscopic data representing the lignin-to-cellulose ratio (Li/Ce) enabled to estimate trends of lignification. The above traits were obtained for the three poplar genotypes: H-275, Grandis, and Androscoggin to assess the suitability of their plantation on the reclaimed heap. Our results show a significant effect of genotype on TRW, WD, and the Raman Li/Ce, while the effect of the soil substrate was less pronounced. The highest Li/Ce was identified in the H-275 genotype grown on a substrate with hummus. H-275 also showed higher TRW values compared to the other genotypes. WD was significantly higher in Grandis and Androscoggin genotypes grown on the "Sand" substrate. Associations between tree-ring parameters and climatic variables (temperature and precipitation) were mostly low and not statistically significant. Our findings from individual tree rings indicate that the genotype is the crucial factor influencing the lignification of poplar trees grown on post-mining lands.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu