- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Morteza Zare Oskouei; Behnam Mohammadi-Ivatloo; Mehdi Abapour; Mahmood Shafiee; Amjad Anvari-Moghaddam;Coordinated operation of several industrial energy hubs (IEHs) to realize local energy management concepts at strategic points like industrial parks has attracted the attention of power grid operators worldwide. Deriving an operational model for integrating a large set of IEHs to trade energy in various markets is a fundamental challenge that has not yet been addressed. In this context, this paper presents an optimal market participation strategy for a virtual energy hub (VEH) consisting of multiple IEHs and industrial consumers. The proposed strategy seeks to answer two questions: (1) how can a VEH operator (VEHO) minimize its operation cost when participating in different energy markets (2) how can ancillary services affect the economic performance of VEH To address these questions, a two-stage robust-stochastic optimization model is proposed with the aim of minimizing the total operation cost of VEH and compensating the operational risks associated with the existing uncertainties considering the operational limits of the power grid. To this aim, the advanced ancillary services, i.e., market-based demand response programs and transactive energy management mechanism are used in line with the optimization problem. Furthermore, the role of the multi-supply facilities is included in the developed strategy to improve VEH flexibility.
Aalborg University R... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2021.3079256&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2021.3079256&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 United KingdomPublisher:MDPI AG Funded by:UKRI | EPSRC Centre for Doctoral...UKRI| EPSRC Centre for Doctoral Training in Renewable Energy Marine Structures (REMS)Authors: Maria Martinez-Luengo; Mahmood Shafiee;doi: 10.3390/en12061176
This paper investigates how the implementation of Structural Health Monitoring Systems (SHMS) in the support structure (SS) of offshore wind turbines (OWT) affects capital expenditure (CAPEX) and operational expenditure (OPEX) of offshore wind farms (WF). In order to determine the added value of Structural Health Monitoring (SHM), the balance between the reduction in OPEX and the increase in CAPEX is evaluated. In this paper, guidelines for SHM implementation in offshore WF are developed and applied to a baseline scenario. The application of these guidelines consist of a review of present regulations in the United Kingdom and Germany, the development of SHM strategy, where the first stage of the Statistical Pattern Recognition (SPR) paradigm is explored, failure modes that can be monitored are identified, and SHM technologies and sensor distributions within the turbines are described for a baseline scenario. Furthermore, an inspection strategy where the different structural inspections to be carried out above and below water is also developed, together with an inspection plan for the lifetime of the structures, for the aforementioned baseline scenario. Once the guidelines have been followed and the SHM and inspection strategies developed, a cost-benefit analysis is performed on the baseline case (10% instrumented assets) and three other scenarios with 20%, 30% and 50% of instrumented assets. Finally, a sensitivity analysis is conducted to evaluate the effects of SHM hardware cost and the time spent in completing the inspections on OPEX and CAPEX of the WF. The results show that SHM hardware cost increases CAPEX significantly, however this increase is much lower than the reduction in OPEX caused by SHM. The results also show that an increase in the percentage of instrumented assets will reduce OPEX and this reduction is considerably higher than the cost of SHM implementation.
CORE arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1176/pdfData sources: Multidisciplinary Digital Publishing InstituteCranfield University: Collection of E-Research - CERESArticle . 2019License: CC BYFull-Text: https://doi.org/10.3390/en12061176Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1176/pdfData sources: Multidisciplinary Digital Publishing InstituteCranfield University: Collection of E-Research - CERESArticle . 2019License: CC BYFull-Text: https://doi.org/10.3390/en12061176Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United KingdomPublisher:MDPI AG Funded by:UKRI | Supergen Wind HubUKRI| Supergen Wind HubAuthors: Tobi Elusakin; Mahmood Shafiee; Tosin Adedipe; Fateme Dinmohammadi;doi: 10.3390/en14041134
With increasing deployment of offshore wind farms further from shore and in deeper waters, the efficient and effective planning of operation and maintenance (O&M) activities has received considerable attention from wind energy developers and operators in recent years. The O&M planning of offshore wind farms is a complicated task, as it depends on many factors such as asset degradation rates, availability of resources required to perform maintenance tasks (e.g., transport vessels, service crew, spare parts, and special tools) as well as the uncertainties associated with weather and climate variability. A brief review of the literature shows that a lot of research has been conducted on optimizing the O&M schedules for fixed-bottom offshore wind turbines; however, the literature for O&M planning of floating wind farms is too limited. This paper presents a stochastic Petri network (SPN) model for O&M planning of floating offshore wind turbines (FOWTs) and their support structure components, including floating platform, moorings and anchoring system. The proposed model incorporates all interrelationships between different factors influencing O&M planning of FOWTs, including deterioration and renewal process of components within the system. Relevant data such as failure rate, mean-time-to-failure (MTTF), degradation rate, etc. are collected from the literature as well as wind energy industry databases, and then the model is tested on an NREL 5 MW reference wind turbine system mounted on an OC3-Hywind spar buoy floating platform. The results indicate that our proposed model can significantly contribute to the reduction of O&M costs in the floating offshore wind sector.
CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1134/pdfData sources: Multidisciplinary Digital Publishing InstituteCranfield University: Collection of E-Research - CERESArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041134Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1134/pdfData sources: Multidisciplinary Digital Publishing InstituteCranfield University: Collection of E-Research - CERESArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041134Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:UKRI | Supergen Wind HubUKRI| Supergen Wind HubAuthors: Mahmood Shafiee;AbstractFloating offshore wind energy is a new form of marine renewable energy which is attracting a great deal of attention worldwide. However, the concepts of floating offshore wind turbines (FOWTs) are still in early stages of development and their failure properties are not yet fully understood. Compared to bottom-fixed wind turbines, FOWTs are subject to more extreme environmental conditions and significant mechanical stresses which may cause a higher degradation rate and shorter mean-time-to-failure for components/structures. To fill the research gap, this paper aims to conduct qualitative and quantitative failure studies on an OC3 spar-type FOWT platform with 3 catenary mooring lines. The failure analyses are performed based on two well-established reliability engineering methodologies, namely, fault tree analysis (FTA) and failure mode and effects analysis (FMEA). The most critical FOWT components are prioritized according to their failure likelihood as well as the risk-priority-number. Our results show a good agreement between the two methods with regard to failure criticality rankings. However, some differences between the results are also observed that are attributed to the difference between FTA and FMEA methodologies as the former incorporates the causes of various failure modes into analysis, whereas the latter is mainly adopted for a single random failure analysis. The results obtained from the FMEA study for the FOWT system will also be compared with those reported for bottom-fixed offshore wind turbines and some interesting conclusions are derived.
Innovative Infrastru... arrow_drop_down Innovative Infrastructure SolutionsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41062-022-00982-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Innovative Infrastru... arrow_drop_down Innovative Infrastructure SolutionsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41062-022-00982-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Mahmood Shafiee;doi: 10.3390/en17164191
A significant number of first-generation offshore wind turbines (OWTs) have either reached or are approaching the end of their operational lifespan and need to be upgraded or replaced with more modern units. In response to this concern, governments, regulatory bodies and industries have initiated the development of effective end-of-life (EOL) management strategies for offshore wind infrastructure. Lifetime extension is a relatively new concept that has recently gained significant attention within the offshore wind energy community. Extending the service lifetime of OWTs can yield many benefits, such as reduced capital cost, increased return on investment (ROI), improved overall energy output, and reduced toxic gas emissions. Nevertheless, it is important to identify and prepare for the challenges that may limit the full exploitation of the potential for OWT lifetime extension projects. The objective of this paper is to present a detailed PESTLE analysis to evaluate the various political, economic, sociological, technological, legal, and environmental challenges that must be overcome to successfully implement lifetime extension projects in the offshore wind energy sector. We propose a decision framework for extending the lifetime of OWTs, involving the degradation mechanisms and failure modes of components, remaining useful life estimation processes, safety and structural integrity assessments, economic and environmental evaluations, and the selection of lifetime extension technologies among remanufacturing, retrofitting, and reconditioning. Finally, we outline some of the opportunities that lifetime extension can offer for the wind energy industry to foster a more circular and sustainable economy in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17164191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17164191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:MDPI AG Authors: Esmat Baghdadi; Mahmood Shafiee; Babakalli Alkali;doi: 10.3390/su14127232
The environmental sustainability and business benefits of end-of-life products have led to worldwide growth in the remanufacturing market. However, customers are often sceptical about the quality and durability of remanufactured products. To ensure a risk-free customer experience, dealers carry out some upgrading actions on the most critical components and offer a reasonable warranty period on products at the time of resale. It is crucial for dealers to consider customers’ attitudes and preferences when deciding on an upgrading strategy, warranty coverage, and sales price for remanufactured products. This paper aims to establish an equilibrium between customers’ expected costs and dealers’ expected profit for remanufactured products sold with a two-dimensional warranty and post-warranty service. In our model, customers make their decisions based on cost–benefit balance, whereas dealers make decisions that maximise their profit margin. Owing to the nature of the conflict between the dealer and customers, a Stackelberg game model is developed to optimise the upgrade strategy, warranty policy, and pricing decisions for remanufactured products. The Karush–Kuhn–Tucker (KKT) optimality condition of the lower-level problem is used to solve the model. Finally, a numerical example is provided to illustrate its applicability.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/12/7232/pdfData sources: Multidisciplinary Digital Publishing InstituteCORE (RIOXX-UK Aggregator)Article . 2022Full-Text: https://kar.kent.ac.uk/95420/1/Publish.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/12/7232/pdfData sources: Multidisciplinary Digital Publishing InstituteCORE (RIOXX-UK Aggregator)Article . 2022Full-Text: https://kar.kent.ac.uk/95420/1/Publish.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United KingdomPublisher:Wiley Authors: Karl Ezra S. Pilario; Karl Ezra S. Pilario; Abdulhakim Adeoye Shittu; Phil Hart; +3 AuthorsKarl Ezra S. Pilario; Karl Ezra S. Pilario; Abdulhakim Adeoye Shittu; Phil Hart; Athanasios Kolios; Mahmood Shafiee; Ali Mehmanparast;AbstractThe structural integrity of offshore wind turbine (OWT) support structures is affected by one of the most severe damage mechanisms known as pitting corrosion‐fatigue. In this study, the structural reliability of such structures subjected to pitting corrosion‐fatigue is assessed using a damage tolerance modelling approach. A probabilistic model that ascertains the reliability of the structure is presented, incorporating the randomness in cyclic load and corrosive environment as well as uncertainties in shape factor, pit size and aspect ratio. A non‐intrusive formulation is proposed consisting of a sequence of steps. First, a stochastic parametric Finite Element Analysis (FEA) is performed using SMART© crack growth and Design Xplorer© facilities within the software package ANSYS. Secondly, the results obtained from the FEA are processed using an Artificial Neural Network (ANN) response surface modelling technique. Finally, the First Order Reliability Method (FORM) is used to calculate the reliability indices of components. The results reveal that for the inherent stochastic conditions, the structure becomes unsafe after the 18th year, before the attainment of the design life of 20 years. The FEA results are in very good agreement with results obtained from analysis steps outlined in design standard BS 7910 and other references designated as ‘theoretical analysis methods’ in this study. The results predict, for the case study, that the pit growth life is approximately 56% of the total pitting corrosion fatigue life. Sensitivity analysis results show that the aspect ratio of pits at critical size plays a significant role on the reliability of the structure.
CORE arrow_drop_down COREArticle . 2020License: CC BYFull-Text: https://kar.kent.ac.uk/83272/11/we.2542.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2020License: CC BYFull-Text: https://kar.kent.ac.uk/83272/11/we.2542.pdfData sources: CORE (RIOXX-UK Aggregator)Cranfield University: Collection of E-Research - CERESArticle . 2020License: CC BYFull-Text: https://doi.org/10.1002/we.2542Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2020License: CC BYFull-Text: https://kar.kent.ac.uk/83272/11/we.2542.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2020License: CC BYFull-Text: https://kar.kent.ac.uk/83272/11/we.2542.pdfData sources: CORE (RIOXX-UK Aggregator)Cranfield University: Collection of E-Research - CERESArticle . 2020License: CC BYFull-Text: https://doi.org/10.1002/we.2542Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Mahmood Shafiee;doi: 10.3390/en15124289
The identification of appropriate locations for wind energy development is a complex problem that involves several factors, ranging from technical to socio-economic and environmental aspects. Wind energy site selection is generally associated with high degrees of uncertainty due to the long planning, design, construction, and operational timescales. Thus, there is a crucial need to develop efficient methods that are capable of capturing uncertainties in subjective assessments provided by different stakeholders with diverse views. This paper proposes a novel multi-criteria decision model integrating the fuzzy analytic network process (FANP) and the fuzzy technique for order performance by similarity to ideal solution (TOPSIS) to evaluate and prioritize the potential sites for wind power development. Four major criteria, namely economic, social, technical, and geographical, with nine sub-criteria are identified based on consultation with wind farm investors, regulatory bodies, landowners and residents, developers and operators, component suppliers, ecologists, and GIS analysts. The stakeholders’ preferences regarding the relative importance of criteria are measured using a logarithmic least squares method, and then the alternative sites are prioritized based on their relative closeness to the positive ideal solution. The proposed model is applied to determine the most appropriate site for constructing an onshore wind power plant consisting of 10 wind turbines of 2.5 MW. Finally, the results are discussed and compared with those obtained using the traditional AHP, ANP and ANP-TOPSIS decision-making approaches.
CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://kar.kent.ac.uk/95395/1/Publish.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2022License: CC BYFull-Text: https://kar.kent.ac.uk/95395/1/Publish.pdfData sources: CORE (RIOXX-UK Aggregator)EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4289/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://kar.kent.ac.uk/95395/1/Publish.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2022License: CC BYFull-Text: https://kar.kent.ac.uk/95395/1/Publish.pdfData sources: CORE (RIOXX-UK Aggregator)EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4289/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Authors: Fateme Dinmohammadi; Anaah M. Farook; Mahmood Shafiee;doi: 10.3390/en18051269
With greenhouse gas emissions and climate change continuing to be major global concerns, researchers are increasingly focusing on reducing energy consumption as a key strategy to address these challenges. In recent years, various devices and technologies have been developed for residential buildings to implement energy-saving strategies and enhance energy efficiency. This paper presents a real-time IoT-based smart monitoring system designed to optimize energy consumption and enhance residents’ safety through efficient monitoring of home conditions and appliance usage. The system is built on a Raspberry Pi Model 4B as its core platform, integrating various IoT sensors, including the DS18B20 for temperature monitoring, the BH1750 for measuring light intensity, a passive infrared (PIR) sensor for motion detection, and the MQ7 sensor for carbon monoxide detection. The Adafruit IO platform is used for both data storage and the design of a graphical user interface (GUI), enabling residents to remotely control their home environment. Our solution significantly enhances energy efficiency by monitoring the status of lighting and heating systems and notifying users when these systems are active in unoccupied areas. Additionally, safety is improved through IFTTT notifications, which alert users if the temperature exceeds a set limit or if carbon monoxide is detected. The smart home monitoring device is tested in a university residential building, demonstrating its reliability, accuracy, and efficiency in detecting and monitoring various home conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18051269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18051269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Fateme Dinmohammadi; Yuxuan Han; Mahmood Shafiee;doi: 10.3390/en16093748
The share of residential building energy consumption in global energy consumption has rapidly increased after the COVID-19 crisis. The accurate prediction of energy consumption under different indoor and outdoor conditions is an essential step towards improving energy efficiency and reducing carbon footprints in the residential building sector. In this paper, a PSO-optimized random forest classification algorithm is proposed to identify the most important factors contributing to residential heating energy consumption. A self-organizing map (SOM) approach is applied for feature dimensionality reduction, and an ensemble classification model based on the stacking method is trained on the dimensionality-reduced data. The results show that the stacking model outperforms the other models with an accuracy of 95.4% in energy consumption prediction. Finally, a causal inference method is introduced in addition to Shapley Additive Explanation (SHAP) to explore and analyze the factors influencing energy consumption. A clear causal relationship between water pipe temperature changes, air temperature, and building energy consumption is found, compensating for the neglect of temperature in the SHAP analysis. The findings of this research can help residential building owners/managers make more informed decisions around the selection of efficient heating management systems to save on energy bills.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3748/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3748/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Morteza Zare Oskouei; Behnam Mohammadi-Ivatloo; Mehdi Abapour; Mahmood Shafiee; Amjad Anvari-Moghaddam;Coordinated operation of several industrial energy hubs (IEHs) to realize local energy management concepts at strategic points like industrial parks has attracted the attention of power grid operators worldwide. Deriving an operational model for integrating a large set of IEHs to trade energy in various markets is a fundamental challenge that has not yet been addressed. In this context, this paper presents an optimal market participation strategy for a virtual energy hub (VEH) consisting of multiple IEHs and industrial consumers. The proposed strategy seeks to answer two questions: (1) how can a VEH operator (VEHO) minimize its operation cost when participating in different energy markets (2) how can ancillary services affect the economic performance of VEH To address these questions, a two-stage robust-stochastic optimization model is proposed with the aim of minimizing the total operation cost of VEH and compensating the operational risks associated with the existing uncertainties considering the operational limits of the power grid. To this aim, the advanced ancillary services, i.e., market-based demand response programs and transactive energy management mechanism are used in line with the optimization problem. Furthermore, the role of the multi-supply facilities is included in the developed strategy to improve VEH flexibility.
Aalborg University R... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2021.3079256&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2021.3079256&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 United KingdomPublisher:MDPI AG Funded by:UKRI | EPSRC Centre for Doctoral...UKRI| EPSRC Centre for Doctoral Training in Renewable Energy Marine Structures (REMS)Authors: Maria Martinez-Luengo; Mahmood Shafiee;doi: 10.3390/en12061176
This paper investigates how the implementation of Structural Health Monitoring Systems (SHMS) in the support structure (SS) of offshore wind turbines (OWT) affects capital expenditure (CAPEX) and operational expenditure (OPEX) of offshore wind farms (WF). In order to determine the added value of Structural Health Monitoring (SHM), the balance between the reduction in OPEX and the increase in CAPEX is evaluated. In this paper, guidelines for SHM implementation in offshore WF are developed and applied to a baseline scenario. The application of these guidelines consist of a review of present regulations in the United Kingdom and Germany, the development of SHM strategy, where the first stage of the Statistical Pattern Recognition (SPR) paradigm is explored, failure modes that can be monitored are identified, and SHM technologies and sensor distributions within the turbines are described for a baseline scenario. Furthermore, an inspection strategy where the different structural inspections to be carried out above and below water is also developed, together with an inspection plan for the lifetime of the structures, for the aforementioned baseline scenario. Once the guidelines have been followed and the SHM and inspection strategies developed, a cost-benefit analysis is performed on the baseline case (10% instrumented assets) and three other scenarios with 20%, 30% and 50% of instrumented assets. Finally, a sensitivity analysis is conducted to evaluate the effects of SHM hardware cost and the time spent in completing the inspections on OPEX and CAPEX of the WF. The results show that SHM hardware cost increases CAPEX significantly, however this increase is much lower than the reduction in OPEX caused by SHM. The results also show that an increase in the percentage of instrumented assets will reduce OPEX and this reduction is considerably higher than the cost of SHM implementation.
CORE arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1176/pdfData sources: Multidisciplinary Digital Publishing InstituteCranfield University: Collection of E-Research - CERESArticle . 2019License: CC BYFull-Text: https://doi.org/10.3390/en12061176Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1176/pdfData sources: Multidisciplinary Digital Publishing InstituteCranfield University: Collection of E-Research - CERESArticle . 2019License: CC BYFull-Text: https://doi.org/10.3390/en12061176Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United KingdomPublisher:MDPI AG Funded by:UKRI | Supergen Wind HubUKRI| Supergen Wind HubAuthors: Tobi Elusakin; Mahmood Shafiee; Tosin Adedipe; Fateme Dinmohammadi;doi: 10.3390/en14041134
With increasing deployment of offshore wind farms further from shore and in deeper waters, the efficient and effective planning of operation and maintenance (O&M) activities has received considerable attention from wind energy developers and operators in recent years. The O&M planning of offshore wind farms is a complicated task, as it depends on many factors such as asset degradation rates, availability of resources required to perform maintenance tasks (e.g., transport vessels, service crew, spare parts, and special tools) as well as the uncertainties associated with weather and climate variability. A brief review of the literature shows that a lot of research has been conducted on optimizing the O&M schedules for fixed-bottom offshore wind turbines; however, the literature for O&M planning of floating wind farms is too limited. This paper presents a stochastic Petri network (SPN) model for O&M planning of floating offshore wind turbines (FOWTs) and their support structure components, including floating platform, moorings and anchoring system. The proposed model incorporates all interrelationships between different factors influencing O&M planning of FOWTs, including deterioration and renewal process of components within the system. Relevant data such as failure rate, mean-time-to-failure (MTTF), degradation rate, etc. are collected from the literature as well as wind energy industry databases, and then the model is tested on an NREL 5 MW reference wind turbine system mounted on an OC3-Hywind spar buoy floating platform. The results indicate that our proposed model can significantly contribute to the reduction of O&M costs in the floating offshore wind sector.
CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1134/pdfData sources: Multidisciplinary Digital Publishing InstituteCranfield University: Collection of E-Research - CERESArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041134Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1134/pdfData sources: Multidisciplinary Digital Publishing InstituteCranfield University: Collection of E-Research - CERESArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/en14041134Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:UKRI | Supergen Wind HubUKRI| Supergen Wind HubAuthors: Mahmood Shafiee;AbstractFloating offshore wind energy is a new form of marine renewable energy which is attracting a great deal of attention worldwide. However, the concepts of floating offshore wind turbines (FOWTs) are still in early stages of development and their failure properties are not yet fully understood. Compared to bottom-fixed wind turbines, FOWTs are subject to more extreme environmental conditions and significant mechanical stresses which may cause a higher degradation rate and shorter mean-time-to-failure for components/structures. To fill the research gap, this paper aims to conduct qualitative and quantitative failure studies on an OC3 spar-type FOWT platform with 3 catenary mooring lines. The failure analyses are performed based on two well-established reliability engineering methodologies, namely, fault tree analysis (FTA) and failure mode and effects analysis (FMEA). The most critical FOWT components are prioritized according to their failure likelihood as well as the risk-priority-number. Our results show a good agreement between the two methods with regard to failure criticality rankings. However, some differences between the results are also observed that are attributed to the difference between FTA and FMEA methodologies as the former incorporates the causes of various failure modes into analysis, whereas the latter is mainly adopted for a single random failure analysis. The results obtained from the FMEA study for the FOWT system will also be compared with those reported for bottom-fixed offshore wind turbines and some interesting conclusions are derived.
Innovative Infrastru... arrow_drop_down Innovative Infrastructure SolutionsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41062-022-00982-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Innovative Infrastru... arrow_drop_down Innovative Infrastructure SolutionsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41062-022-00982-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Mahmood Shafiee;doi: 10.3390/en17164191
A significant number of first-generation offshore wind turbines (OWTs) have either reached or are approaching the end of their operational lifespan and need to be upgraded or replaced with more modern units. In response to this concern, governments, regulatory bodies and industries have initiated the development of effective end-of-life (EOL) management strategies for offshore wind infrastructure. Lifetime extension is a relatively new concept that has recently gained significant attention within the offshore wind energy community. Extending the service lifetime of OWTs can yield many benefits, such as reduced capital cost, increased return on investment (ROI), improved overall energy output, and reduced toxic gas emissions. Nevertheless, it is important to identify and prepare for the challenges that may limit the full exploitation of the potential for OWT lifetime extension projects. The objective of this paper is to present a detailed PESTLE analysis to evaluate the various political, economic, sociological, technological, legal, and environmental challenges that must be overcome to successfully implement lifetime extension projects in the offshore wind energy sector. We propose a decision framework for extending the lifetime of OWTs, involving the degradation mechanisms and failure modes of components, remaining useful life estimation processes, safety and structural integrity assessments, economic and environmental evaluations, and the selection of lifetime extension technologies among remanufacturing, retrofitting, and reconditioning. Finally, we outline some of the opportunities that lifetime extension can offer for the wind energy industry to foster a more circular and sustainable economy in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17164191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17164191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:MDPI AG Authors: Esmat Baghdadi; Mahmood Shafiee; Babakalli Alkali;doi: 10.3390/su14127232
The environmental sustainability and business benefits of end-of-life products have led to worldwide growth in the remanufacturing market. However, customers are often sceptical about the quality and durability of remanufactured products. To ensure a risk-free customer experience, dealers carry out some upgrading actions on the most critical components and offer a reasonable warranty period on products at the time of resale. It is crucial for dealers to consider customers’ attitudes and preferences when deciding on an upgrading strategy, warranty coverage, and sales price for remanufactured products. This paper aims to establish an equilibrium between customers’ expected costs and dealers’ expected profit for remanufactured products sold with a two-dimensional warranty and post-warranty service. In our model, customers make their decisions based on cost–benefit balance, whereas dealers make decisions that maximise their profit margin. Owing to the nature of the conflict between the dealer and customers, a Stackelberg game model is developed to optimise the upgrade strategy, warranty policy, and pricing decisions for remanufactured products. The Karush–Kuhn–Tucker (KKT) optimality condition of the lower-level problem is used to solve the model. Finally, a numerical example is provided to illustrate its applicability.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/12/7232/pdfData sources: Multidisciplinary Digital Publishing InstituteCORE (RIOXX-UK Aggregator)Article . 2022Full-Text: https://kar.kent.ac.uk/95420/1/Publish.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/12/7232/pdfData sources: Multidisciplinary Digital Publishing InstituteCORE (RIOXX-UK Aggregator)Article . 2022Full-Text: https://kar.kent.ac.uk/95420/1/Publish.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United KingdomPublisher:Wiley Authors: Karl Ezra S. Pilario; Karl Ezra S. Pilario; Abdulhakim Adeoye Shittu; Phil Hart; +3 AuthorsKarl Ezra S. Pilario; Karl Ezra S. Pilario; Abdulhakim Adeoye Shittu; Phil Hart; Athanasios Kolios; Mahmood Shafiee; Ali Mehmanparast;AbstractThe structural integrity of offshore wind turbine (OWT) support structures is affected by one of the most severe damage mechanisms known as pitting corrosion‐fatigue. In this study, the structural reliability of such structures subjected to pitting corrosion‐fatigue is assessed using a damage tolerance modelling approach. A probabilistic model that ascertains the reliability of the structure is presented, incorporating the randomness in cyclic load and corrosive environment as well as uncertainties in shape factor, pit size and aspect ratio. A non‐intrusive formulation is proposed consisting of a sequence of steps. First, a stochastic parametric Finite Element Analysis (FEA) is performed using SMART© crack growth and Design Xplorer© facilities within the software package ANSYS. Secondly, the results obtained from the FEA are processed using an Artificial Neural Network (ANN) response surface modelling technique. Finally, the First Order Reliability Method (FORM) is used to calculate the reliability indices of components. The results reveal that for the inherent stochastic conditions, the structure becomes unsafe after the 18th year, before the attainment of the design life of 20 years. The FEA results are in very good agreement with results obtained from analysis steps outlined in design standard BS 7910 and other references designated as ‘theoretical analysis methods’ in this study. The results predict, for the case study, that the pit growth life is approximately 56% of the total pitting corrosion fatigue life. Sensitivity analysis results show that the aspect ratio of pits at critical size plays a significant role on the reliability of the structure.
CORE arrow_drop_down COREArticle . 2020License: CC BYFull-Text: https://kar.kent.ac.uk/83272/11/we.2542.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2020License: CC BYFull-Text: https://kar.kent.ac.uk/83272/11/we.2542.pdfData sources: CORE (RIOXX-UK Aggregator)Cranfield University: Collection of E-Research - CERESArticle . 2020License: CC BYFull-Text: https://doi.org/10.1002/we.2542Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2020License: CC BYFull-Text: https://kar.kent.ac.uk/83272/11/we.2542.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2020License: CC BYFull-Text: https://kar.kent.ac.uk/83272/11/we.2542.pdfData sources: CORE (RIOXX-UK Aggregator)Cranfield University: Collection of E-Research - CERESArticle . 2020License: CC BYFull-Text: https://doi.org/10.1002/we.2542Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Mahmood Shafiee;doi: 10.3390/en15124289
The identification of appropriate locations for wind energy development is a complex problem that involves several factors, ranging from technical to socio-economic and environmental aspects. Wind energy site selection is generally associated with high degrees of uncertainty due to the long planning, design, construction, and operational timescales. Thus, there is a crucial need to develop efficient methods that are capable of capturing uncertainties in subjective assessments provided by different stakeholders with diverse views. This paper proposes a novel multi-criteria decision model integrating the fuzzy analytic network process (FANP) and the fuzzy technique for order performance by similarity to ideal solution (TOPSIS) to evaluate and prioritize the potential sites for wind power development. Four major criteria, namely economic, social, technical, and geographical, with nine sub-criteria are identified based on consultation with wind farm investors, regulatory bodies, landowners and residents, developers and operators, component suppliers, ecologists, and GIS analysts. The stakeholders’ preferences regarding the relative importance of criteria are measured using a logarithmic least squares method, and then the alternative sites are prioritized based on their relative closeness to the positive ideal solution. The proposed model is applied to determine the most appropriate site for constructing an onshore wind power plant consisting of 10 wind turbines of 2.5 MW. Finally, the results are discussed and compared with those obtained using the traditional AHP, ANP and ANP-TOPSIS decision-making approaches.
CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://kar.kent.ac.uk/95395/1/Publish.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2022License: CC BYFull-Text: https://kar.kent.ac.uk/95395/1/Publish.pdfData sources: CORE (RIOXX-UK Aggregator)EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4289/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://kar.kent.ac.uk/95395/1/Publish.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2022License: CC BYFull-Text: https://kar.kent.ac.uk/95395/1/Publish.pdfData sources: CORE (RIOXX-UK Aggregator)EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4289/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Authors: Fateme Dinmohammadi; Anaah M. Farook; Mahmood Shafiee;doi: 10.3390/en18051269
With greenhouse gas emissions and climate change continuing to be major global concerns, researchers are increasingly focusing on reducing energy consumption as a key strategy to address these challenges. In recent years, various devices and technologies have been developed for residential buildings to implement energy-saving strategies and enhance energy efficiency. This paper presents a real-time IoT-based smart monitoring system designed to optimize energy consumption and enhance residents’ safety through efficient monitoring of home conditions and appliance usage. The system is built on a Raspberry Pi Model 4B as its core platform, integrating various IoT sensors, including the DS18B20 for temperature monitoring, the BH1750 for measuring light intensity, a passive infrared (PIR) sensor for motion detection, and the MQ7 sensor for carbon monoxide detection. The Adafruit IO platform is used for both data storage and the design of a graphical user interface (GUI), enabling residents to remotely control their home environment. Our solution significantly enhances energy efficiency by monitoring the status of lighting and heating systems and notifying users when these systems are active in unoccupied areas. Additionally, safety is improved through IFTTT notifications, which alert users if the temperature exceeds a set limit or if carbon monoxide is detected. The smart home monitoring device is tested in a university residential building, demonstrating its reliability, accuracy, and efficiency in detecting and monitoring various home conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18051269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18051269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Fateme Dinmohammadi; Yuxuan Han; Mahmood Shafiee;doi: 10.3390/en16093748
The share of residential building energy consumption in global energy consumption has rapidly increased after the COVID-19 crisis. The accurate prediction of energy consumption under different indoor and outdoor conditions is an essential step towards improving energy efficiency and reducing carbon footprints in the residential building sector. In this paper, a PSO-optimized random forest classification algorithm is proposed to identify the most important factors contributing to residential heating energy consumption. A self-organizing map (SOM) approach is applied for feature dimensionality reduction, and an ensemble classification model based on the stacking method is trained on the dimensionality-reduced data. The results show that the stacking model outperforms the other models with an accuracy of 95.4% in energy consumption prediction. Finally, a causal inference method is introduced in addition to Shapley Additive Explanation (SHAP) to explore and analyze the factors influencing energy consumption. A clear causal relationship between water pipe temperature changes, air temperature, and building energy consumption is found, compensating for the neglect of temperature in the SHAP analysis. The findings of this research can help residential building owners/managers make more informed decisions around the selection of efficient heating management systems to save on energy bills.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3748/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3748/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu