- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Zhaolu Liu; Ning Wang; Ruiqi Wang; Jie Xu; Hao Zhang; Nan Wang; Yongjie Cao; Yao Liu; Junxi Zhang;Sodium‐ion batteries (SIBs) are crucial energy equipment that sustain low cost and better environmental benefit. Nevertheless, the practical energy density of SIBs is limited by cathode material. Over last decades, the iron‐based sulfate (IBS) has been extensively studied owing to its numerous advantages, including a large theoretical specific energy (over 100 Wh kg−1), high working potential (above 3.4 V), low cost, good structural stability, and environmental friendliness. Nevertheless, the application of IBS in SIBs is limited by its unsuitable electrolyte and low electronic/ionic conductivity. This review summarizes recently developed results on IBS materials for SIBs, ranging from the phase diagram–composition structure–electrochemical performance to modification research. A generalized summary of the future prospects of IBS‐based materials is also provided, with the hope of inspiring further advances in their application in SIBs.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202301399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202301399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Royal Society of Chemistry (RSC) Jiawei Chen; Yu Peng; Yue Yin; Mingzhu Liu; Zhong Fang; Yihua Xie; Bowen Chen; Yongjie Cao; Lidan Xing; Jianhang Huang; Yonggang Wang; Xiaoli Dong; Yongyao Xia;doi: 10.1039/d2ee01257j
A carbonate-based electrolyte is well-designedviaa multifunctional lithium difluorobis(oxalato) phosphate (LiDFBOP) additive, endowing 4.5 V sodium metal batteries with high energy density, excellent cycling stability and a wide temperature range.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee01257j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee01257j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Zhaolu Liu; Ning Wang; Ruiqi Wang; Jie Xu; Hao Zhang; Nan Wang; Yongjie Cao; Yao Liu; Junxi Zhang;Sodium‐ion batteries (SIBs) are crucial energy equipment that sustain low cost and better environmental benefit. Nevertheless, the practical energy density of SIBs is limited by cathode material. Over last decades, the iron‐based sulfate (IBS) has been extensively studied owing to its numerous advantages, including a large theoretical specific energy (over 100 Wh kg−1), high working potential (above 3.4 V), low cost, good structural stability, and environmental friendliness. Nevertheless, the application of IBS in SIBs is limited by its unsuitable electrolyte and low electronic/ionic conductivity. This review summarizes recently developed results on IBS materials for SIBs, ranging from the phase diagram–composition structure–electrochemical performance to modification research. A generalized summary of the future prospects of IBS‐based materials is also provided, with the hope of inspiring further advances in their application in SIBs.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202301399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202301399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Royal Society of Chemistry (RSC) Jiawei Chen; Yu Peng; Yue Yin; Mingzhu Liu; Zhong Fang; Yihua Xie; Bowen Chen; Yongjie Cao; Lidan Xing; Jianhang Huang; Yonggang Wang; Xiaoli Dong; Yongyao Xia;doi: 10.1039/d2ee01257j
A carbonate-based electrolyte is well-designedviaa multifunctional lithium difluorobis(oxalato) phosphate (LiDFBOP) additive, endowing 4.5 V sodium metal batteries with high energy density, excellent cycling stability and a wide temperature range.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee01257j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee01257j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu