- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Asif Khan;
Asif Khan
Asif Khan in OpenAIRESaim Memon;
Saim Memon
Saim Memon in OpenAIRETariq Pervez Sattar;
Tariq Pervez Sattar
Tariq Pervez Sattar in OpenAIREIncreasing the use of electric vehicles (EVs) is regarded as a step in the right direction to reduce air pollution and carbon emissions. However, a dramatic increase of EV and charging stations has raised voltage quality and harmonic distortion issues that affect the performance of integrated renewable power sources (wind and solar) and smart-grid electrical transmission networks. This paper models an integrated electric vehicle charging and battery storage system operating in the presence of unpredictable wind and solar power sources. The aim is to enable the design of an electrical control system that develops the correct duty cycle to stabilize and regulate the voltage at the dc/dc power conversion station. Simulations are performed to evaluate energy management by the proposed control system. The proposed system effectively manages the electric power on the grid by drawing power from the batteries at peak times and then charging them in off-peak times, reducing the load on the converter and enabling the reduction of charging time for electric vehicles. A constant voltage is achieved on the grid irrespective of fluctuations in renewable energy generation and in the load.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2830187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2830187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Akademia Baru Publishing The domestic dwellings in Pakistan have predominantly implemented low-carbon strategies by harvesting solar energy using photo-voltaic (PV) panels as a long-term vision of low-carbon economy. Most of the urban areas in Pakistan stay hot and humid in an entire year. Consistent solar irradiation at higher temperatures is one of the major factors that affect the power generation performance of monocrystalline PV systems pose challenges to performance and degradation issues. Monocrystalline PV module efficiencies are declining and damaging under the continuous exposure to higher surface day-time temperatures in the different parts of the country. MATLAB simulations were performed based on the validated mathematical approach. This paper investigates the hot arid surface temperature impacts on the performance of PV modules during the summer and winter seasons in Pakistan. The investigations are performed examining the comparative output power generating performance of the PV system. This paper also investigates the influence of installations of PV-system in the North, South, East and West regions of Pakistan. It was examined that the northern areas of Pakistan are more suitable for maintaining the long-term durability of the PV system. Investigations are performed for the peak summer and peak winter days. During summer months, cooling strategies have to be implemented to overcome the heating effects whilst reducing degradation effect on installed PV-system.
International Journa... arrow_drop_down International Journal of Solar Thermal Vacuum EngineeringArticleLicense: CC BY NCData sources: UnpayWallInternational Journal of Solar Thermal Vacuum EngineeringArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37934/stve.2.1.1939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Solar Thermal Vacuum EngineeringArticleLicense: CC BY NCData sources: UnpayWallInternational Journal of Solar Thermal Vacuum EngineeringArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37934/stve.2.1.1939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu