Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hossein Mohammadpour; orcid bw Ralf Cord-Ruwisch;
    Ralf Cord-Ruwisch
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Ralf Cord-Ruwisch in OpenAIRE
    Almantas Pivrikas; orcid Goen Ho;
    Goen Ho
    ORCID
    Harvested from ORCID Public Data File

    Goen Ho in OpenAIRE

    The conversion of biogas to biomethane represents an attractive solution to replace fossil gas with a renewable gas. However, removal of such a large percentage of CO2 from a fuel gas comes at a significant energy cost using the conventional CO2 capture technologies and hence has led to an opportunity to develop an alternative technique for large-scale carbon capture. Results of the current study suggest that employing an anion exchange membrane (AEM)-based alkaline water electrolyser for CO2 removal from gas mixtures offers an energy-efficient strategy for the capture and removal of CO2 from biogas. After capturing CO2 in an aqueous absorption column, the resulting bicarbonate solution was fed through the cathode of an AEM-based electrolyser. Although the CO2 absorption rate increased from about 300 to 900 mol m−3 h−1 when the pH was elevated from 9 to 13, the system's energy requirement was lowest at pH = 9. The economic assessment shows that the electrochemical work requirement for CO2 removal from biogas using the AEM-based alkaline electrolyser ranges between 0.25 and 0.92 kWh/kg CO2 at optimum conditions (pH = 9). This could potentially reduce the energy input for CO2 removal by about 50% compared to commercially available biogas upgrading technologies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
Powered by OpenAIRE graph