- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Elsevier BV Authors: Hossein Mohammadpour;Ralf Cord-Ruwisch;
Almantas Pivrikas;Ralf Cord-Ruwisch
Ralf Cord-Ruwisch in OpenAIREGoen Ho;
The conversion of biogas to biomethane represents an attractive solution to replace fossil gas with a renewable gas. However, removal of such a large percentage of CO2 from a fuel gas comes at a significant energy cost using the conventional CO2 capture technologies and hence has led to an opportunity to develop an alternative technique for large-scale carbon capture. Results of the current study suggest that employing an anion exchange membrane (AEM)-based alkaline water electrolyser for CO2 removal from gas mixtures offers an energy-efficient strategy for the capture and removal of CO2 from biogas. After capturing CO2 in an aqueous absorption column, the resulting bicarbonate solution was fed through the cathode of an AEM-based electrolyser. Although the CO2 absorption rate increased from about 300 to 900 mol m−3 h−1 when the pH was elevated from 9 to 13, the system's energy requirement was lowest at pH = 9. The economic assessment shows that the electrochemical work requirement for CO2 removal from biogas using the AEM-based alkaline electrolyser ranges between 0.25 and 0.92 kWh/kg CO2 at optimum conditions (pH = 9). This could potentially reduce the energy input for CO2 removal by about 50% compared to commercially available biogas upgrading technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.05.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.05.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu