- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yufan Zhang; Mengshuo Jia; Honglin Wen; Yuexin Bian; Yuanyuan Shi;Energy forecasting is an essential task in power system operations. Operators usually issue forecasts and leverage them to schedule energy dispatch ahead of time. However, forecast models are typically developed in a way that overlooks the operational value of the forecasts. To bridge the gap, we design a value-oriented point forecasting approach for sequential energy dispatch problems with renewable energy sources. At the training phase, we align the loss function with the overall operation cost function, thereby achieving reduced operation costs. The forecast model parameter estimation is formulated as a bilevel program. Under mild assumptions, we convert the upper-level objective into an equivalent form using the dual solutions obtained from the lower-level operation problems. Additionally, a novel iterative solution strategy is proposed for the newly formulated bilevel program. Under such an iterative scheme, we show that the upper-level objective is locally linear regarding the forecast model output, and can act as the loss function. Numerical experiments demonstrate that, compared to commonly used statistical quality-oriented point forecasting methods, forecasts obtained by the proposed approach result in lower operation costs. Meanwhile, the proposed approach is more computationally efficient than traditional two-stage stochastic programs. Accepted in IEEE Transactions on Smart Grid
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3503554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3503554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yufan Zhang; Mengshuo Jia; Honglin Wen; Yuexin Bian; Yuanyuan Shi;Energy forecasting is an essential task in power system operations. Operators usually issue forecasts and leverage them to schedule energy dispatch ahead of time. However, forecast models are typically developed in a way that overlooks the operational value of the forecasts. To bridge the gap, we design a value-oriented point forecasting approach for sequential energy dispatch problems with renewable energy sources. At the training phase, we align the loss function with the overall operation cost function, thereby achieving reduced operation costs. The forecast model parameter estimation is formulated as a bilevel program. Under mild assumptions, we convert the upper-level objective into an equivalent form using the dual solutions obtained from the lower-level operation problems. Additionally, a novel iterative solution strategy is proposed for the newly formulated bilevel program. Under such an iterative scheme, we show that the upper-level objective is locally linear regarding the forecast model output, and can act as the loss function. Numerical experiments demonstrate that, compared to commonly used statistical quality-oriented point forecasting methods, forecasts obtained by the proposed approach result in lower operation costs. Meanwhile, the proposed approach is more computationally efficient than traditional two-stage stochastic programs. Accepted in IEEE Transactions on Smart Grid
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3503554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3503554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institution of Engineering and Technology (IET) Authors: Yuanyuan Shi; Bolun Xu;doi: 10.1049/rpg2.12794
AbstractTime‐varying electricity tariffs provide consumers the flexibility to adjust their consumption patterns in response to price variations to reduce the cost of electricity while at the same time contributing to grid operation. As more homes and buildings utilize time‐varying tariffs, utilities and regulators must seek ways to model demand‐side flexibilities to predict future demands and design new incentives. This paper proposes a novel end‐to‐end deep learning framework that simultaneously identifies demand baselines and the price‐response model from the net demand measurements and price signals. A gradient‐descent approach is then proposed that backpropagates the net demand forecast errors to update the weights of the price‐response model and the weights of the baseline demand forecast jointly. The effectiveness of the approach is demonstrated through computation experiments with synthetic demand response traces and a large‐scale real‐world DR dataset. The results show that the approach accurately identifies the DR model, even without prior knowledge about the baseline demand.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institution of Engineering and Technology (IET) Authors: Yuanyuan Shi; Bolun Xu;doi: 10.1049/rpg2.12794
AbstractTime‐varying electricity tariffs provide consumers the flexibility to adjust their consumption patterns in response to price variations to reduce the cost of electricity while at the same time contributing to grid operation. As more homes and buildings utilize time‐varying tariffs, utilities and regulators must seek ways to model demand‐side flexibilities to predict future demands and design new incentives. This paper proposes a novel end‐to‐end deep learning framework that simultaneously identifies demand baselines and the price‐response model from the net demand measurements and price signals. A gradient‐descent approach is then proposed that backpropagates the net demand forecast errors to update the weights of the price‐response model and the weights of the baseline demand forecast jointly. The effectiveness of the approach is demonstrated through computation experiments with synthetic demand response traces and a large‐scale real‐world DR dataset. The results show that the approach accurately identifies the DR model, even without prior knowledge about the baseline demand.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: D..., NSF | Mid-scale RI-2: Grid-Conn...NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov Approach ,NSF| Mid-scale RI-2: Grid-Connected Testing Infrastructure for Networked Control of Distributed Energy ResourcesAuthors: Jie Feng; Wenqi Cui; Jorge Cortés; Yuanyuan Shi;The increasing integration of renewable energy resources into power grids has led to time-varying system inertia and consequent degradation in frequency dynamics. A promising solution to alleviate performance degradation is using power electronics interfaced energy resources, such as renewable generators and battery energy storage for primary frequency control, by adjusting their power output set-points in response to frequency deviations. However, designing a frequency controller under time-varying inertia is challenging. Specifically, the stability or optimality of controllers designed for time-invariant systems can be compromised once applied to a time-varying system. We model the frequency dynamics under time-varying inertia as a nonlinear switching system, where the frequency dynamics under each mode are described by the nonlinear swing equations and different modes represent different inertia levels. We identify a key controller structure, named Neural Proportional-Integral (Neural-PI) controller, that guarantees exponential input-to-state stability for each mode. To further improve performance, we present an online event-triggered switching algorithm to select the most suitable controller from a set of Neural-PI controllers, each optimized for specific inertia levels. Simulations on the IEEE 39-bus system validate the effectiveness of the proposed online switching control method with stability guarantees and optimized performance for frequency control under time-varying inertia.
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3523262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3523262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: D..., NSF | Mid-scale RI-2: Grid-Conn...NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov Approach ,NSF| Mid-scale RI-2: Grid-Connected Testing Infrastructure for Networked Control of Distributed Energy ResourcesAuthors: Jie Feng; Wenqi Cui; Jorge Cortés; Yuanyuan Shi;The increasing integration of renewable energy resources into power grids has led to time-varying system inertia and consequent degradation in frequency dynamics. A promising solution to alleviate performance degradation is using power electronics interfaced energy resources, such as renewable generators and battery energy storage for primary frequency control, by adjusting their power output set-points in response to frequency deviations. However, designing a frequency controller under time-varying inertia is challenging. Specifically, the stability or optimality of controllers designed for time-invariant systems can be compromised once applied to a time-varying system. We model the frequency dynamics under time-varying inertia as a nonlinear switching system, where the frequency dynamics under each mode are described by the nonlinear swing equations and different modes represent different inertia levels. We identify a key controller structure, named Neural Proportional-Integral (Neural-PI) controller, that guarantees exponential input-to-state stability for each mode. To further improve performance, we present an online event-triggered switching algorithm to select the most suitable controller from a set of Neural-PI controllers, each optimized for specific inertia levels. Simulations on the IEEE 39-bus system validate the effectiveness of the proposed online switching control method with stability guarantees and optimized performance for frequency control under time-varying inertia.
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3523262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3523262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2022 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: D...NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov ApproachJie Feng; Yuanyuan Shi; Guannan Qu; Steven H. Low; Anima Anandkumar; Adam Wierman;Deep reinforcement learning has been recognized as a promising tool to address the challenges in real-time control of power systems. However, its deployment in real-world power systems has been hindered by a lack of explicit stability and safety guarantees. In this paper, we propose a stability-constrained reinforcement learning (RL) method for real-time voltage control, that guarantees system stability both during policy learning and deployment of the learned policy. The key idea underlying our approach is an explicitly constructed Lyapunov function that leads to a sufficient structural condition for stabilizing policies, i.e., monotonically decreasing policies guarantee stability. We incorporate this structural constraint with RL, by parameterizing each local voltage controller using a monotone neural network, thus ensuring the stability constraint is satisfied by design. We demonstrate the effectiveness of our approach in both single-phase and three-phase IEEE test feeders, where the proposed method can reduce the transient control cost by more than 25% and shorten the voltage recovery time by 21.5% on average compared to the widely used linear policy, while always achieving voltage stability. In contrast, standard RL methods often fail to achieve voltage stability. This paper is accepted by TCNS. arXiv admin note: text overlap with arXiv:2109.14854
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2023Full-Text: https://doi.org/10.1109/tcns.2023.3338240Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1109/tcns.2...Article . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcns.2023.3338240&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2023Full-Text: https://doi.org/10.1109/tcns.2023.3338240Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1109/tcns.2...Article . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcns.2023.3338240&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2022 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: D...NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov ApproachJie Feng; Yuanyuan Shi; Guannan Qu; Steven H. Low; Anima Anandkumar; Adam Wierman;Deep reinforcement learning has been recognized as a promising tool to address the challenges in real-time control of power systems. However, its deployment in real-world power systems has been hindered by a lack of explicit stability and safety guarantees. In this paper, we propose a stability-constrained reinforcement learning (RL) method for real-time voltage control, that guarantees system stability both during policy learning and deployment of the learned policy. The key idea underlying our approach is an explicitly constructed Lyapunov function that leads to a sufficient structural condition for stabilizing policies, i.e., monotonically decreasing policies guarantee stability. We incorporate this structural constraint with RL, by parameterizing each local voltage controller using a monotone neural network, thus ensuring the stability constraint is satisfied by design. We demonstrate the effectiveness of our approach in both single-phase and three-phase IEEE test feeders, where the proposed method can reduce the transient control cost by more than 25% and shorten the voltage recovery time by 21.5% on average compared to the widely used linear policy, while always achieving voltage stability. In contrast, standard RL methods often fail to achieve voltage stability. This paper is accepted by TCNS. arXiv admin note: text overlap with arXiv:2109.14854
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2023Full-Text: https://doi.org/10.1109/tcns.2023.3338240Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1109/tcns.2...Article . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcns.2023.3338240&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2023Full-Text: https://doi.org/10.1109/tcns.2023.3338240Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1109/tcns.2...Article . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcns.2023.3338240&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: D...NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov ApproachAuthors: Yufan Zhang; Sujit Dey; Yuanyuan Shi;Electric vehicle (EV) charging couples the operation of power and traffic networks. Specifically, the power network determines the charging price at various locations, while EVs on the traffic network optimize the charging power given the price, acting as price-takers. We model such decision-making processes by a bilevel program, with the power network at the upper-level and the traffic network at the lower-level. However, since the two networks are managed by separate entities and the charging expense term, calculated as the product of charging price and charging demand, is nonlinear. Solving the bilevel program is nontrivial. To overcome these challenges, we derive the charging demand function using multiparametric programming theory. This function establishes a piecewise linear relationship between the charging price and the optimal charging power, enabling the power network operator to manage EV charging power independently while accounting for the coupling between the two networks. With the derived function, we are also able to replace the nonlinear charging expense term with a piecewise quadratic one, thus guaranteeing solution optimality. Our numerical studies demonstrate that different traffic demands can have an impact on charging patterns and the power network can effectively incentivize charging at low-price nodes through price setting. submitted to IEEE Transactions on Smart Grid
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3327070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3327070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: D...NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov ApproachAuthors: Yufan Zhang; Sujit Dey; Yuanyuan Shi;Electric vehicle (EV) charging couples the operation of power and traffic networks. Specifically, the power network determines the charging price at various locations, while EVs on the traffic network optimize the charging power given the price, acting as price-takers. We model such decision-making processes by a bilevel program, with the power network at the upper-level and the traffic network at the lower-level. However, since the two networks are managed by separate entities and the charging expense term, calculated as the product of charging price and charging demand, is nonlinear. Solving the bilevel program is nontrivial. To overcome these challenges, we derive the charging demand function using multiparametric programming theory. This function establishes a piecewise linear relationship between the charging price and the optimal charging power, enabling the power network operator to manage EV charging power independently while accounting for the coupling between the two networks. With the derived function, we are also able to replace the nonlinear charging expense term with a piecewise quadratic one, thus guaranteeing solution optimality. Our numerical studies demonstrate that different traffic demands can have an impact on charging patterns and the power network can effectively incentivize charging at low-price nodes through price setting. submitted to IEEE Transactions on Smart Grid
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3327070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3327070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2024Publisher:Elsevier BV Authors: Yuexin Bian; Xiaohan Fu; Rajesh K. Gupta; Yuanyuan Shi;In this paper, we introduce a novel framework for building learning and control, focusing on ventilation and thermal management to enhance energy efficiency. We validate the performance of the proposed framework in system model learning via two case studies: a synthetic study focusing on the joint learning of temperature and CO2 fields, and an application to a real-world dataset for CO2 field learning. For building control, we demonstrate that the proposed framework can optimize the control actions and significantly reduce the energy cost while maintaining a comfort and healthy indoor environment. When compared to existing traditional methods, an optimization-based method with ODE models and reinforcement learning, our approach can significantly reduce the energy consumption while guarantees all the safety-critical air quality and control constraints. Promising future research directions involve validating and improving the proposed PDE models through accurate estimation of airflow fields within indoor environments. Additionally, incorporating uncertainty modeling into the PDE framework for HVAC control presents an opportunity to enhance the efficiency and reliability of building HVAC system management.
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2024Publisher:Elsevier BV Authors: Yuexin Bian; Xiaohan Fu; Rajesh K. Gupta; Yuanyuan Shi;In this paper, we introduce a novel framework for building learning and control, focusing on ventilation and thermal management to enhance energy efficiency. We validate the performance of the proposed framework in system model learning via two case studies: a synthetic study focusing on the joint learning of temperature and CO2 fields, and an application to a real-world dataset for CO2 field learning. For building control, we demonstrate that the proposed framework can optimize the control actions and significantly reduce the energy cost while maintaining a comfort and healthy indoor environment. When compared to existing traditional methods, an optimization-based method with ODE models and reinforcement learning, our approach can significantly reduce the energy consumption while guarantees all the safety-critical air quality and control constraints. Promising future research directions involve validating and improving the proposed PDE models through accurate estimation of airflow fields within indoor environments. Additionally, incorporating uncertainty modeling into the PDE framework for HVAC control presents an opportunity to enhance the efficiency and reliability of building HVAC system management.
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Preprint 2024Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yuexin Bian; Ningkun Zheng; Yang Zheng; Bolun Xu; Yuanyuan Shi;Energy storage are strategic participants in electricity markets to arbitrage price differences. Future power system operators must understand and predict strategic storage arbitrage behaviors for market power monitoring and capacity adequacy planning. This paper proposes a novel data-driven approach that incorporates prior model knowledge for predicting the strategic behaviors of price-taker energy storage systems. We propose a gradient-descent method to find the storage model parameters given the historical price signals and observations. We prove that the identified model parameters will converge to the true user parameters under a class of quadratic objective and linear equality-constrained storage models. We demonstrate the effectiveness of our approach through numerical experiments with synthetic and real-world storage behavior data. The proposed approach significantly improves the accuracy of storage model identification and behavior forecasting compared to previous blackbox data-driven approaches. accepted by IEEE Transactions on Smart Grid, 2023
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2024 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3303469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2024 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3303469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Preprint 2024Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yuexin Bian; Ningkun Zheng; Yang Zheng; Bolun Xu; Yuanyuan Shi;Energy storage are strategic participants in electricity markets to arbitrage price differences. Future power system operators must understand and predict strategic storage arbitrage behaviors for market power monitoring and capacity adequacy planning. This paper proposes a novel data-driven approach that incorporates prior model knowledge for predicting the strategic behaviors of price-taker energy storage systems. We propose a gradient-descent method to find the storage model parameters given the historical price signals and observations. We prove that the identified model parameters will converge to the true user parameters under a class of quadratic objective and linear equality-constrained storage models. We demonstrate the effectiveness of our approach through numerical experiments with synthetic and real-world storage behavior data. The proposed approach significantly improves the accuracy of storage model identification and behavior forecasting compared to previous blackbox data-driven approaches. accepted by IEEE Transactions on Smart Grid, 2023
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2024 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3303469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2024 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3303469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: C..., NSF | Collaborative Research: C..., NSF | Collaborative Research: D... +2 projectsNSF| Collaborative Research: CNS Core: Small: Optimizing Large-Scale Heterogeneous ML Platforms ,NSF| Collaborative Research: CPS: Medium: Enabling DER Integration via Redesign of Information Flows ,NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov Approach ,NSF| Collaborative Research: CNS Core: Medium: Dynamic Data-driven Systems - Theory and Applications ,NSF| Collaborative Research: NGSDI: CarbonFirst: A Sustainable and Reliable Carbon-Centric Cloud-Edge Software InfrastructureAuthors: Christopher Yeh; Jing Yu; Yuanyuan Shi; Adam Wierman;Voltage control generally requires accurate information about the grid's topology in order to guarantee network stability. However, accurate topology identification is challenging for existing methods, especially as the grid is subject to increasingly frequent reconfiguration due to the adoption of renewable energy. In this work, we combine a nested convex body chasing algorithm with a robust predictive controller to achieve provably finite-time convergence to safe voltage limits in the online setting where there is uncertainty in both the network topology as well as load and generation variations. In an online fashion, our algorithm narrows down the set of possible grid models that are consistent with observations and adjusts reactive power generation accordingly to keep voltages within desired safety limits. Our approach can also incorporate existing partial knowledge of the network to improve voltage control performance. We demonstrate the effectiveness of our approach in a case study on a Southern California Edison 56-bus distribution system. Our experiments show that in practical settings, the controller is indeed able to narrow the set of consistent topologies quickly enough to make control decisions that ensure stability in both linearized and realistic non-linear models of the distribution grid. Published in IEEE Transactions on Smart Grid, vol. 15, no. 5, pp. 4754-4764, Sept. 2024. arXiv admin note: substantial text overlap with arXiv:2206.14369
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2024License: CC BYFull-Text: https://doi.org/10.1109/tsg.2024.3383804Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3383804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2024License: CC BYFull-Text: https://doi.org/10.1109/tsg.2024.3383804Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3383804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: C..., NSF | Collaborative Research: C..., NSF | Collaborative Research: D... +2 projectsNSF| Collaborative Research: CNS Core: Small: Optimizing Large-Scale Heterogeneous ML Platforms ,NSF| Collaborative Research: CPS: Medium: Enabling DER Integration via Redesign of Information Flows ,NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov Approach ,NSF| Collaborative Research: CNS Core: Medium: Dynamic Data-driven Systems - Theory and Applications ,NSF| Collaborative Research: NGSDI: CarbonFirst: A Sustainable and Reliable Carbon-Centric Cloud-Edge Software InfrastructureAuthors: Christopher Yeh; Jing Yu; Yuanyuan Shi; Adam Wierman;Voltage control generally requires accurate information about the grid's topology in order to guarantee network stability. However, accurate topology identification is challenging for existing methods, especially as the grid is subject to increasingly frequent reconfiguration due to the adoption of renewable energy. In this work, we combine a nested convex body chasing algorithm with a robust predictive controller to achieve provably finite-time convergence to safe voltage limits in the online setting where there is uncertainty in both the network topology as well as load and generation variations. In an online fashion, our algorithm narrows down the set of possible grid models that are consistent with observations and adjusts reactive power generation accordingly to keep voltages within desired safety limits. Our approach can also incorporate existing partial knowledge of the network to improve voltage control performance. We demonstrate the effectiveness of our approach in a case study on a Southern California Edison 56-bus distribution system. Our experiments show that in practical settings, the controller is indeed able to narrow the set of consistent topologies quickly enough to make control decisions that ensure stability in both linearized and realistic non-linear models of the distribution grid. Published in IEEE Transactions on Smart Grid, vol. 15, no. 5, pp. 4754-4764, Sept. 2024. arXiv admin note: substantial text overlap with arXiv:2206.14369
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2024License: CC BYFull-Text: https://doi.org/10.1109/tsg.2024.3383804Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3383804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2024License: CC BYFull-Text: https://doi.org/10.1109/tsg.2024.3383804Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3383804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Bolun Xu; Yuanyuan Shi; Daniel S. Kirschen; Baosen Zhang;Battery participants in performance-based frequency regulation markets must consider the cost of battery aging in their operating strategies to maximize market profits. In this paper we solve this problem by proposing an optimal control policy and an optimal bidding policy based on realistic market settings and an accurate battery aging model. The proposed control policy has a threshold structure and achieves near-optimal performance with respect to an offline controller that has complete future information. The proposed bidding policy considers the optimal control policy to maximize market profits while satisfying the market performance requirement through a chance-constraint. It factors the value of performance and supports a trade-off between higher profits and a lower risk of violating performance requirements. We demonstrate the optimality of both policies using simulations. A case study based on the PJM regulation market shows that our approach is effective at maximizing operating profits.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2018.2846774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2018.2846774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Bolun Xu; Yuanyuan Shi; Daniel S. Kirschen; Baosen Zhang;Battery participants in performance-based frequency regulation markets must consider the cost of battery aging in their operating strategies to maximize market profits. In this paper we solve this problem by proposing an optimal control policy and an optimal bidding policy based on realistic market settings and an accurate battery aging model. The proposed control policy has a threshold structure and achieves near-optimal performance with respect to an offline controller that has complete future information. The proposed bidding policy considers the optimal control policy to maximize market profits while satisfying the market performance requirement through a chance-constraint. It factors the value of performance and supports a trade-off between higher profits and a lower risk of violating performance requirements. We demonstrate the optimality of both policies using simulations. A case study based on the PJM regulation market shows that our approach is effective at maximizing operating profits.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2018.2846774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2018.2846774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yufan Zhang; Mengshuo Jia; Honglin Wen; Yuexin Bian; Yuanyuan Shi;Energy forecasting is an essential task in power system operations. Operators usually issue forecasts and leverage them to schedule energy dispatch ahead of time. However, forecast models are typically developed in a way that overlooks the operational value of the forecasts. To bridge the gap, we design a value-oriented point forecasting approach for sequential energy dispatch problems with renewable energy sources. At the training phase, we align the loss function with the overall operation cost function, thereby achieving reduced operation costs. The forecast model parameter estimation is formulated as a bilevel program. Under mild assumptions, we convert the upper-level objective into an equivalent form using the dual solutions obtained from the lower-level operation problems. Additionally, a novel iterative solution strategy is proposed for the newly formulated bilevel program. Under such an iterative scheme, we show that the upper-level objective is locally linear regarding the forecast model output, and can act as the loss function. Numerical experiments demonstrate that, compared to commonly used statistical quality-oriented point forecasting methods, forecasts obtained by the proposed approach result in lower operation costs. Meanwhile, the proposed approach is more computationally efficient than traditional two-stage stochastic programs. Accepted in IEEE Transactions on Smart Grid
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3503554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3503554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yufan Zhang; Mengshuo Jia; Honglin Wen; Yuexin Bian; Yuanyuan Shi;Energy forecasting is an essential task in power system operations. Operators usually issue forecasts and leverage them to schedule energy dispatch ahead of time. However, forecast models are typically developed in a way that overlooks the operational value of the forecasts. To bridge the gap, we design a value-oriented point forecasting approach for sequential energy dispatch problems with renewable energy sources. At the training phase, we align the loss function with the overall operation cost function, thereby achieving reduced operation costs. The forecast model parameter estimation is formulated as a bilevel program. Under mild assumptions, we convert the upper-level objective into an equivalent form using the dual solutions obtained from the lower-level operation problems. Additionally, a novel iterative solution strategy is proposed for the newly formulated bilevel program. Under such an iterative scheme, we show that the upper-level objective is locally linear regarding the forecast model output, and can act as the loss function. Numerical experiments demonstrate that, compared to commonly used statistical quality-oriented point forecasting methods, forecasts obtained by the proposed approach result in lower operation costs. Meanwhile, the proposed approach is more computationally efficient than traditional two-stage stochastic programs. Accepted in IEEE Transactions on Smart Grid
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3503554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3503554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institution of Engineering and Technology (IET) Authors: Yuanyuan Shi; Bolun Xu;doi: 10.1049/rpg2.12794
AbstractTime‐varying electricity tariffs provide consumers the flexibility to adjust their consumption patterns in response to price variations to reduce the cost of electricity while at the same time contributing to grid operation. As more homes and buildings utilize time‐varying tariffs, utilities and regulators must seek ways to model demand‐side flexibilities to predict future demands and design new incentives. This paper proposes a novel end‐to‐end deep learning framework that simultaneously identifies demand baselines and the price‐response model from the net demand measurements and price signals. A gradient‐descent approach is then proposed that backpropagates the net demand forecast errors to update the weights of the price‐response model and the weights of the baseline demand forecast jointly. The effectiveness of the approach is demonstrated through computation experiments with synthetic demand response traces and a large‐scale real‐world DR dataset. The results show that the approach accurately identifies the DR model, even without prior knowledge about the baseline demand.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institution of Engineering and Technology (IET) Authors: Yuanyuan Shi; Bolun Xu;doi: 10.1049/rpg2.12794
AbstractTime‐varying electricity tariffs provide consumers the flexibility to adjust their consumption patterns in response to price variations to reduce the cost of electricity while at the same time contributing to grid operation. As more homes and buildings utilize time‐varying tariffs, utilities and regulators must seek ways to model demand‐side flexibilities to predict future demands and design new incentives. This paper proposes a novel end‐to‐end deep learning framework that simultaneously identifies demand baselines and the price‐response model from the net demand measurements and price signals. A gradient‐descent approach is then proposed that backpropagates the net demand forecast errors to update the weights of the price‐response model and the weights of the baseline demand forecast jointly. The effectiveness of the approach is demonstrated through computation experiments with synthetic demand response traces and a large‐scale real‐world DR dataset. The results show that the approach accurately identifies the DR model, even without prior knowledge about the baseline demand.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: D..., NSF | Mid-scale RI-2: Grid-Conn...NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov Approach ,NSF| Mid-scale RI-2: Grid-Connected Testing Infrastructure for Networked Control of Distributed Energy ResourcesAuthors: Jie Feng; Wenqi Cui; Jorge Cortés; Yuanyuan Shi;The increasing integration of renewable energy resources into power grids has led to time-varying system inertia and consequent degradation in frequency dynamics. A promising solution to alleviate performance degradation is using power electronics interfaced energy resources, such as renewable generators and battery energy storage for primary frequency control, by adjusting their power output set-points in response to frequency deviations. However, designing a frequency controller under time-varying inertia is challenging. Specifically, the stability or optimality of controllers designed for time-invariant systems can be compromised once applied to a time-varying system. We model the frequency dynamics under time-varying inertia as a nonlinear switching system, where the frequency dynamics under each mode are described by the nonlinear swing equations and different modes represent different inertia levels. We identify a key controller structure, named Neural Proportional-Integral (Neural-PI) controller, that guarantees exponential input-to-state stability for each mode. To further improve performance, we present an online event-triggered switching algorithm to select the most suitable controller from a set of Neural-PI controllers, each optimized for specific inertia levels. Simulations on the IEEE 39-bus system validate the effectiveness of the proposed online switching control method with stability guarantees and optimized performance for frequency control under time-varying inertia.
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3523262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3523262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: D..., NSF | Mid-scale RI-2: Grid-Conn...NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov Approach ,NSF| Mid-scale RI-2: Grid-Connected Testing Infrastructure for Networked Control of Distributed Energy ResourcesAuthors: Jie Feng; Wenqi Cui; Jorge Cortés; Yuanyuan Shi;The increasing integration of renewable energy resources into power grids has led to time-varying system inertia and consequent degradation in frequency dynamics. A promising solution to alleviate performance degradation is using power electronics interfaced energy resources, such as renewable generators and battery energy storage for primary frequency control, by adjusting their power output set-points in response to frequency deviations. However, designing a frequency controller under time-varying inertia is challenging. Specifically, the stability or optimality of controllers designed for time-invariant systems can be compromised once applied to a time-varying system. We model the frequency dynamics under time-varying inertia as a nonlinear switching system, where the frequency dynamics under each mode are described by the nonlinear swing equations and different modes represent different inertia levels. We identify a key controller structure, named Neural Proportional-Integral (Neural-PI) controller, that guarantees exponential input-to-state stability for each mode. To further improve performance, we present an online event-triggered switching algorithm to select the most suitable controller from a set of Neural-PI controllers, each optimized for specific inertia levels. Simulations on the IEEE 39-bus system validate the effectiveness of the proposed online switching control method with stability guarantees and optimized performance for frequency control under time-varying inertia.
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3523262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3523262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2022 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: D...NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov ApproachJie Feng; Yuanyuan Shi; Guannan Qu; Steven H. Low; Anima Anandkumar; Adam Wierman;Deep reinforcement learning has been recognized as a promising tool to address the challenges in real-time control of power systems. However, its deployment in real-world power systems has been hindered by a lack of explicit stability and safety guarantees. In this paper, we propose a stability-constrained reinforcement learning (RL) method for real-time voltage control, that guarantees system stability both during policy learning and deployment of the learned policy. The key idea underlying our approach is an explicitly constructed Lyapunov function that leads to a sufficient structural condition for stabilizing policies, i.e., monotonically decreasing policies guarantee stability. We incorporate this structural constraint with RL, by parameterizing each local voltage controller using a monotone neural network, thus ensuring the stability constraint is satisfied by design. We demonstrate the effectiveness of our approach in both single-phase and three-phase IEEE test feeders, where the proposed method can reduce the transient control cost by more than 25% and shorten the voltage recovery time by 21.5% on average compared to the widely used linear policy, while always achieving voltage stability. In contrast, standard RL methods often fail to achieve voltage stability. This paper is accepted by TCNS. arXiv admin note: text overlap with arXiv:2109.14854
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2023Full-Text: https://doi.org/10.1109/tcns.2023.3338240Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1109/tcns.2...Article . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcns.2023.3338240&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2023Full-Text: https://doi.org/10.1109/tcns.2023.3338240Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1109/tcns.2...Article . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcns.2023.3338240&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2022 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: D...NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov ApproachJie Feng; Yuanyuan Shi; Guannan Qu; Steven H. Low; Anima Anandkumar; Adam Wierman;Deep reinforcement learning has been recognized as a promising tool to address the challenges in real-time control of power systems. However, its deployment in real-world power systems has been hindered by a lack of explicit stability and safety guarantees. In this paper, we propose a stability-constrained reinforcement learning (RL) method for real-time voltage control, that guarantees system stability both during policy learning and deployment of the learned policy. The key idea underlying our approach is an explicitly constructed Lyapunov function that leads to a sufficient structural condition for stabilizing policies, i.e., monotonically decreasing policies guarantee stability. We incorporate this structural constraint with RL, by parameterizing each local voltage controller using a monotone neural network, thus ensuring the stability constraint is satisfied by design. We demonstrate the effectiveness of our approach in both single-phase and three-phase IEEE test feeders, where the proposed method can reduce the transient control cost by more than 25% and shorten the voltage recovery time by 21.5% on average compared to the widely used linear policy, while always achieving voltage stability. In contrast, standard RL methods often fail to achieve voltage stability. This paper is accepted by TCNS. arXiv admin note: text overlap with arXiv:2109.14854
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2023Full-Text: https://doi.org/10.1109/tcns.2023.3338240Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1109/tcns.2...Article . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcns.2023.3338240&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2023Full-Text: https://doi.org/10.1109/tcns.2023.3338240Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1109/tcns.2...Article . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcns.2023.3338240&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: D...NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov ApproachAuthors: Yufan Zhang; Sujit Dey; Yuanyuan Shi;Electric vehicle (EV) charging couples the operation of power and traffic networks. Specifically, the power network determines the charging price at various locations, while EVs on the traffic network optimize the charging power given the price, acting as price-takers. We model such decision-making processes by a bilevel program, with the power network at the upper-level and the traffic network at the lower-level. However, since the two networks are managed by separate entities and the charging expense term, calculated as the product of charging price and charging demand, is nonlinear. Solving the bilevel program is nontrivial. To overcome these challenges, we derive the charging demand function using multiparametric programming theory. This function establishes a piecewise linear relationship between the charging price and the optimal charging power, enabling the power network operator to manage EV charging power independently while accounting for the coupling between the two networks. With the derived function, we are also able to replace the nonlinear charging expense term with a piecewise quadratic one, thus guaranteeing solution optimality. Our numerical studies demonstrate that different traffic demands can have an impact on charging patterns and the power network can effectively incentivize charging at low-price nodes through price setting. submitted to IEEE Transactions on Smart Grid
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3327070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3327070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: D...NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov ApproachAuthors: Yufan Zhang; Sujit Dey; Yuanyuan Shi;Electric vehicle (EV) charging couples the operation of power and traffic networks. Specifically, the power network determines the charging price at various locations, while EVs on the traffic network optimize the charging power given the price, acting as price-takers. We model such decision-making processes by a bilevel program, with the power network at the upper-level and the traffic network at the lower-level. However, since the two networks are managed by separate entities and the charging expense term, calculated as the product of charging price and charging demand, is nonlinear. Solving the bilevel program is nontrivial. To overcome these challenges, we derive the charging demand function using multiparametric programming theory. This function establishes a piecewise linear relationship between the charging price and the optimal charging power, enabling the power network operator to manage EV charging power independently while accounting for the coupling between the two networks. With the derived function, we are also able to replace the nonlinear charging expense term with a piecewise quadratic one, thus guaranteeing solution optimality. Our numerical studies demonstrate that different traffic demands can have an impact on charging patterns and the power network can effectively incentivize charging at low-price nodes through price setting. submitted to IEEE Transactions on Smart Grid
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3327070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3327070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2024Publisher:Elsevier BV Authors: Yuexin Bian; Xiaohan Fu; Rajesh K. Gupta; Yuanyuan Shi;In this paper, we introduce a novel framework for building learning and control, focusing on ventilation and thermal management to enhance energy efficiency. We validate the performance of the proposed framework in system model learning via two case studies: a synthetic study focusing on the joint learning of temperature and CO2 fields, and an application to a real-world dataset for CO2 field learning. For building control, we demonstrate that the proposed framework can optimize the control actions and significantly reduce the energy cost while maintaining a comfort and healthy indoor environment. When compared to existing traditional methods, an optimization-based method with ODE models and reinforcement learning, our approach can significantly reduce the energy consumption while guarantees all the safety-critical air quality and control constraints. Promising future research directions involve validating and improving the proposed PDE models through accurate estimation of airflow fields within indoor environments. Additionally, incorporating uncertainty modeling into the PDE framework for HVAC control presents an opportunity to enhance the efficiency and reliability of building HVAC system management.
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2024Publisher:Elsevier BV Authors: Yuexin Bian; Xiaohan Fu; Rajesh K. Gupta; Yuanyuan Shi;In this paper, we introduce a novel framework for building learning and control, focusing on ventilation and thermal management to enhance energy efficiency. We validate the performance of the proposed framework in system model learning via two case studies: a synthetic study focusing on the joint learning of temperature and CO2 fields, and an application to a real-world dataset for CO2 field learning. For building control, we demonstrate that the proposed framework can optimize the control actions and significantly reduce the energy cost while maintaining a comfort and healthy indoor environment. When compared to existing traditional methods, an optimization-based method with ODE models and reinforcement learning, our approach can significantly reduce the energy consumption while guarantees all the safety-critical air quality and control constraints. Promising future research directions involve validating and improving the proposed PDE models through accurate estimation of airflow fields within indoor environments. Additionally, incorporating uncertainty modeling into the PDE framework for HVAC control presents an opportunity to enhance the efficiency and reliability of building HVAC system management.
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Preprint 2024Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yuexin Bian; Ningkun Zheng; Yang Zheng; Bolun Xu; Yuanyuan Shi;Energy storage are strategic participants in electricity markets to arbitrage price differences. Future power system operators must understand and predict strategic storage arbitrage behaviors for market power monitoring and capacity adequacy planning. This paper proposes a novel data-driven approach that incorporates prior model knowledge for predicting the strategic behaviors of price-taker energy storage systems. We propose a gradient-descent method to find the storage model parameters given the historical price signals and observations. We prove that the identified model parameters will converge to the true user parameters under a class of quadratic objective and linear equality-constrained storage models. We demonstrate the effectiveness of our approach through numerical experiments with synthetic and real-world storage behavior data. The proposed approach significantly improves the accuracy of storage model identification and behavior forecasting compared to previous blackbox data-driven approaches. accepted by IEEE Transactions on Smart Grid, 2023
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2024 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3303469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2024 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3303469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Preprint 2024Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yuexin Bian; Ningkun Zheng; Yang Zheng; Bolun Xu; Yuanyuan Shi;Energy storage are strategic participants in electricity markets to arbitrage price differences. Future power system operators must understand and predict strategic storage arbitrage behaviors for market power monitoring and capacity adequacy planning. This paper proposes a novel data-driven approach that incorporates prior model knowledge for predicting the strategic behaviors of price-taker energy storage systems. We propose a gradient-descent method to find the storage model parameters given the historical price signals and observations. We prove that the identified model parameters will converge to the true user parameters under a class of quadratic objective and linear equality-constrained storage models. We demonstrate the effectiveness of our approach through numerical experiments with synthetic and real-world storage behavior data. The proposed approach significantly improves the accuracy of storage model identification and behavior forecasting compared to previous blackbox data-driven approaches. accepted by IEEE Transactions on Smart Grid, 2023
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2024 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3303469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2024 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3303469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: C..., NSF | Collaborative Research: C..., NSF | Collaborative Research: D... +2 projectsNSF| Collaborative Research: CNS Core: Small: Optimizing Large-Scale Heterogeneous ML Platforms ,NSF| Collaborative Research: CPS: Medium: Enabling DER Integration via Redesign of Information Flows ,NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov Approach ,NSF| Collaborative Research: CNS Core: Medium: Dynamic Data-driven Systems - Theory and Applications ,NSF| Collaborative Research: NGSDI: CarbonFirst: A Sustainable and Reliable Carbon-Centric Cloud-Edge Software InfrastructureAuthors: Christopher Yeh; Jing Yu; Yuanyuan Shi; Adam Wierman;Voltage control generally requires accurate information about the grid's topology in order to guarantee network stability. However, accurate topology identification is challenging for existing methods, especially as the grid is subject to increasingly frequent reconfiguration due to the adoption of renewable energy. In this work, we combine a nested convex body chasing algorithm with a robust predictive controller to achieve provably finite-time convergence to safe voltage limits in the online setting where there is uncertainty in both the network topology as well as load and generation variations. In an online fashion, our algorithm narrows down the set of possible grid models that are consistent with observations and adjusts reactive power generation accordingly to keep voltages within desired safety limits. Our approach can also incorporate existing partial knowledge of the network to improve voltage control performance. We demonstrate the effectiveness of our approach in a case study on a Southern California Edison 56-bus distribution system. Our experiments show that in practical settings, the controller is indeed able to narrow the set of consistent topologies quickly enough to make control decisions that ensure stability in both linearized and realistic non-linear models of the distribution grid. Published in IEEE Transactions on Smart Grid, vol. 15, no. 5, pp. 4754-4764, Sept. 2024. arXiv admin note: substantial text overlap with arXiv:2206.14369
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2024License: CC BYFull-Text: https://doi.org/10.1109/tsg.2024.3383804Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3383804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2024License: CC BYFull-Text: https://doi.org/10.1109/tsg.2024.3383804Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3383804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | Collaborative Research: C..., NSF | Collaborative Research: C..., NSF | Collaborative Research: D... +2 projectsNSF| Collaborative Research: CNS Core: Small: Optimizing Large-Scale Heterogeneous ML Platforms ,NSF| Collaborative Research: CPS: Medium: Enabling DER Integration via Redesign of Information Flows ,NSF| Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov Approach ,NSF| Collaborative Research: CNS Core: Medium: Dynamic Data-driven Systems - Theory and Applications ,NSF| Collaborative Research: NGSDI: CarbonFirst: A Sustainable and Reliable Carbon-Centric Cloud-Edge Software InfrastructureAuthors: Christopher Yeh; Jing Yu; Yuanyuan Shi; Adam Wierman;Voltage control generally requires accurate information about the grid's topology in order to guarantee network stability. However, accurate topology identification is challenging for existing methods, especially as the grid is subject to increasingly frequent reconfiguration due to the adoption of renewable energy. In this work, we combine a nested convex body chasing algorithm with a robust predictive controller to achieve provably finite-time convergence to safe voltage limits in the online setting where there is uncertainty in both the network topology as well as load and generation variations. In an online fashion, our algorithm narrows down the set of possible grid models that are consistent with observations and adjusts reactive power generation accordingly to keep voltages within desired safety limits. Our approach can also incorporate existing partial knowledge of the network to improve voltage control performance. We demonstrate the effectiveness of our approach in a case study on a Southern California Edison 56-bus distribution system. Our experiments show that in practical settings, the controller is indeed able to narrow the set of consistent topologies quickly enough to make control decisions that ensure stability in both linearized and realistic non-linear models of the distribution grid. Published in IEEE Transactions on Smart Grid, vol. 15, no. 5, pp. 4754-4764, Sept. 2024. arXiv admin note: substantial text overlap with arXiv:2206.14369
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2024License: CC BYFull-Text: https://doi.org/10.1109/tsg.2024.3383804Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3383804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2024License: CC BYFull-Text: https://doi.org/10.1109/tsg.2024.3383804Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3383804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Bolun Xu; Yuanyuan Shi; Daniel S. Kirschen; Baosen Zhang;Battery participants in performance-based frequency regulation markets must consider the cost of battery aging in their operating strategies to maximize market profits. In this paper we solve this problem by proposing an optimal control policy and an optimal bidding policy based on realistic market settings and an accurate battery aging model. The proposed control policy has a threshold structure and achieves near-optimal performance with respect to an offline controller that has complete future information. The proposed bidding policy considers the optimal control policy to maximize market profits while satisfying the market performance requirement through a chance-constraint. It factors the value of performance and supports a trade-off between higher profits and a lower risk of violating performance requirements. We demonstrate the optimality of both policies using simulations. A case study based on the PJM regulation market shows that our approach is effective at maximizing operating profits.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2018.2846774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2018.2846774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Bolun Xu; Yuanyuan Shi; Daniel S. Kirschen; Baosen Zhang;Battery participants in performance-based frequency regulation markets must consider the cost of battery aging in their operating strategies to maximize market profits. In this paper we solve this problem by proposing an optimal control policy and an optimal bidding policy based on realistic market settings and an accurate battery aging model. The proposed control policy has a threshold structure and achieves near-optimal performance with respect to an offline controller that has complete future information. The proposed bidding policy considers the optimal control policy to maximize market profits while satisfying the market performance requirement through a chance-constraint. It factors the value of performance and supports a trade-off between higher profits and a lower risk of violating performance requirements. We demonstrate the optimality of both policies using simulations. A case study based on the PJM regulation market shows that our approach is effective at maximizing operating profits.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2018.2846774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2018.2846774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu