- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 China (People's Republic of), China (People's Republic of), Hong KongPublisher:MDPI AG Jiahui Huang; Weinong Fu; Shuangxia Niu; Xing Zhao; Yanding Bi; Zhenyang Qiao;doi: 10.3390/en15249385
handle: 10397/99950
A novel asymmetric spoke-type interior permanent magnet (AS-IPM) machine is proposed in this paper. It utilizes the magnetic-field-shifting (MFS) effect to improve the torque performance, which achieves a high utilization ratio of both permanent magnet (PM) torque and reluctance torque. In addition, a general pattern of rotor topologies is proposed to represent all possible machine structures. Various rotor structures can be obtained by changing the design parameters of the general pattern. A non-dominated sorting genetic algorithm II (NSGA-II) is adopted to automatically search for optimal rotor configurations. With the aid of the optimization program, an asymmetric spoke-type rotor structure with improved performance is obtained. To showcase the advantages of the proposed machine, the electromagnetic performance is compared between a conventional spoke-type interior permanent magnet (S-IPM) machine and a proposed AS-IPM machine. The finite-element simulation results show that the optimal design of the AS-IPM performs a 7.7% higher output torque ripple due to the MFS effect while the total PM volume remains the same. Meanwhile, the torque ripple of the proposed structure is significantly reduced by 82.1%.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9385/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/99950Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9385/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/99950Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 China (People's Republic of), China (People's Republic of), Hong KongPublisher:MDPI AG Jiahui Huang; Weinong Fu; Shuangxia Niu; Xing Zhao; Yanding Bi; Zhenyang Qiao;doi: 10.3390/en15249385
handle: 10397/99950
A novel asymmetric spoke-type interior permanent magnet (AS-IPM) machine is proposed in this paper. It utilizes the magnetic-field-shifting (MFS) effect to improve the torque performance, which achieves a high utilization ratio of both permanent magnet (PM) torque and reluctance torque. In addition, a general pattern of rotor topologies is proposed to represent all possible machine structures. Various rotor structures can be obtained by changing the design parameters of the general pattern. A non-dominated sorting genetic algorithm II (NSGA-II) is adopted to automatically search for optimal rotor configurations. With the aid of the optimization program, an asymmetric spoke-type rotor structure with improved performance is obtained. To showcase the advantages of the proposed machine, the electromagnetic performance is compared between a conventional spoke-type interior permanent magnet (S-IPM) machine and a proposed AS-IPM machine. The finite-element simulation results show that the optimal design of the AS-IPM performs a 7.7% higher output torque ripple due to the MFS effect while the total PM volume remains the same. Meanwhile, the torque ripple of the proposed structure is significantly reduced by 82.1%.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9385/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/99950Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9385/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/99950Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Zhenyang Qiao; Dongdong Jiang; Weinong Fu;doi: 10.3390/en16165897
At present, the majority of electric machine design software employs its own unique machine data structure. However, when users need to transfer their designs between software, they are often faced with significant obstacles or cannot obtain a parametric model suitable for optimization. In order to solve this issue, a universal parametric modeling framework is proposed for electric machine design. The geometric structure is strictly constrained to ensure that the model will not interfere with each part because of the randomness of input parameters. A data structure consisting of points, lines, and surfaces is constructed, and a conversion interface for parametric modeling with different software is established. Consequently, this universal framework can automatically generate parametric models appropriate for different finite element analysis (FEA) software according to the input parameters. The framework is especially convenient for users who need to design or optimize an electric machine, particularly when FEA software is required for verification. Numerical verification is performed using different software based on interior permanent magnet (IPM) synchronous machines to demonstrate the effectiveness of the framework.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5897/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5897/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Zhenyang Qiao; Dongdong Jiang; Weinong Fu;doi: 10.3390/en16165897
At present, the majority of electric machine design software employs its own unique machine data structure. However, when users need to transfer their designs between software, they are often faced with significant obstacles or cannot obtain a parametric model suitable for optimization. In order to solve this issue, a universal parametric modeling framework is proposed for electric machine design. The geometric structure is strictly constrained to ensure that the model will not interfere with each part because of the randomness of input parameters. A data structure consisting of points, lines, and surfaces is constructed, and a conversion interface for parametric modeling with different software is established. Consequently, this universal framework can automatically generate parametric models appropriate for different finite element analysis (FEA) software according to the input parameters. The framework is especially convenient for users who need to design or optimize an electric machine, particularly when FEA software is required for verification. Numerical verification is performed using different software based on interior permanent magnet (IPM) synchronous machines to demonstrate the effectiveness of the framework.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5897/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5897/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 China (People's Republic of), China (People's Republic of), Hong KongPublisher:MDPI AG Jiahui Huang; Weinong Fu; Shuangxia Niu; Xing Zhao; Yanding Bi; Zhenyang Qiao;doi: 10.3390/en15249385
handle: 10397/99950
A novel asymmetric spoke-type interior permanent magnet (AS-IPM) machine is proposed in this paper. It utilizes the magnetic-field-shifting (MFS) effect to improve the torque performance, which achieves a high utilization ratio of both permanent magnet (PM) torque and reluctance torque. In addition, a general pattern of rotor topologies is proposed to represent all possible machine structures. Various rotor structures can be obtained by changing the design parameters of the general pattern. A non-dominated sorting genetic algorithm II (NSGA-II) is adopted to automatically search for optimal rotor configurations. With the aid of the optimization program, an asymmetric spoke-type rotor structure with improved performance is obtained. To showcase the advantages of the proposed machine, the electromagnetic performance is compared between a conventional spoke-type interior permanent magnet (S-IPM) machine and a proposed AS-IPM machine. The finite-element simulation results show that the optimal design of the AS-IPM performs a 7.7% higher output torque ripple due to the MFS effect while the total PM volume remains the same. Meanwhile, the torque ripple of the proposed structure is significantly reduced by 82.1%.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9385/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/99950Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9385/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/99950Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 China (People's Republic of), China (People's Republic of), Hong KongPublisher:MDPI AG Jiahui Huang; Weinong Fu; Shuangxia Niu; Xing Zhao; Yanding Bi; Zhenyang Qiao;doi: 10.3390/en15249385
handle: 10397/99950
A novel asymmetric spoke-type interior permanent magnet (AS-IPM) machine is proposed in this paper. It utilizes the magnetic-field-shifting (MFS) effect to improve the torque performance, which achieves a high utilization ratio of both permanent magnet (PM) torque and reluctance torque. In addition, a general pattern of rotor topologies is proposed to represent all possible machine structures. Various rotor structures can be obtained by changing the design parameters of the general pattern. A non-dominated sorting genetic algorithm II (NSGA-II) is adopted to automatically search for optimal rotor configurations. With the aid of the optimization program, an asymmetric spoke-type rotor structure with improved performance is obtained. To showcase the advantages of the proposed machine, the electromagnetic performance is compared between a conventional spoke-type interior permanent magnet (S-IPM) machine and a proposed AS-IPM machine. The finite-element simulation results show that the optimal design of the AS-IPM performs a 7.7% higher output torque ripple due to the MFS effect while the total PM volume remains the same. Meanwhile, the torque ripple of the proposed structure is significantly reduced by 82.1%.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9385/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/99950Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9385/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/99950Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Zhenyang Qiao; Dongdong Jiang; Weinong Fu;doi: 10.3390/en16165897
At present, the majority of electric machine design software employs its own unique machine data structure. However, when users need to transfer their designs between software, they are often faced with significant obstacles or cannot obtain a parametric model suitable for optimization. In order to solve this issue, a universal parametric modeling framework is proposed for electric machine design. The geometric structure is strictly constrained to ensure that the model will not interfere with each part because of the randomness of input parameters. A data structure consisting of points, lines, and surfaces is constructed, and a conversion interface for parametric modeling with different software is established. Consequently, this universal framework can automatically generate parametric models appropriate for different finite element analysis (FEA) software according to the input parameters. The framework is especially convenient for users who need to design or optimize an electric machine, particularly when FEA software is required for verification. Numerical verification is performed using different software based on interior permanent magnet (IPM) synchronous machines to demonstrate the effectiveness of the framework.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5897/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5897/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Zhenyang Qiao; Dongdong Jiang; Weinong Fu;doi: 10.3390/en16165897
At present, the majority of electric machine design software employs its own unique machine data structure. However, when users need to transfer their designs between software, they are often faced with significant obstacles or cannot obtain a parametric model suitable for optimization. In order to solve this issue, a universal parametric modeling framework is proposed for electric machine design. The geometric structure is strictly constrained to ensure that the model will not interfere with each part because of the randomness of input parameters. A data structure consisting of points, lines, and surfaces is constructed, and a conversion interface for parametric modeling with different software is established. Consequently, this universal framework can automatically generate parametric models appropriate for different finite element analysis (FEA) software according to the input parameters. The framework is especially convenient for users who need to design or optimize an electric machine, particularly when FEA software is required for verification. Numerical verification is performed using different software based on interior permanent magnet (IPM) synchronous machines to demonstrate the effectiveness of the framework.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5897/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5897/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu