Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Izabela Regina Costa Araújo; Simone Damasceno Gomes; Tamiris Uana Tonello; Shaiane Dal'Maso Lucas; +2 Authors

    The aim of this study was to evaluate the behavior of an anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) were obtained for the higher organic loading rate (of 8 and 10 g L -1 d -1 , respectively) and the observed tendency is that with the increase of the organic loading rate, the specific biogas production will increase as well as the specific production of methane. The aim of this study was to evaluate the behavior of an anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) were obtained for the higher organic loading rate (of 8 and 10 g L -1 d -1 , respectively) and the observed tendency is that with the increase of the organic loading rate, the specific biogas production will increase as well as the specific production of methane. The aim of this study was to evaluate the behavior of anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) were obtained for the higher organic loading rate (of 8 and 10 g L -1 d -1 , respectively) and the observed tendency is that with the increase of the organic loading rate, the specific biogas production will increase as well as the specific production of methane. The aim of this study was to evaluate the behavior of anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) et la tendance observée est que, avec l'augmentation du taux de charge organique, la production spécifique de biogaz augmentera comme la production spécifique de méthane. كان الهدف من هذه الدراسة هو تقييم سلوك مفاعل لاهوائي ذو سرير معبأ وتدفق مستمر، فيما يتعلق بإنتاج الغاز الحيوي والميثان وإزالة الحمل العضوي، من مياه الصرف الصحي لاستخراج نشا المنيهوت. لهذا الغرض، تم اختباره، في مفاعل بحجم مفيد 2.82 لتر ومتوسط دعم من البولي بروبلين المملوء برغوة البولي إيثيلين، معدل التحميل العضوي (OLR) 2.5 و 5.0 و 8.0 و 10.0 جم L -1 d -1. تم تقييم إزالة COD، الأس الهيدروجيني ونسبة VA/TA والغاز الحيوي وإنتاج الميثان. استنتج من هذه الدراسة أنه من الممكن إنتاج الغاز الحيوي بنسب ميثان أعلى من 80 ٪ (كحد أقصى) وإزالة الحمل العضوي أكثر من 90 ٪ في ظل الظروف المختبرة. فيما يتعلق بالاستقرار، يمكن اعتبار المفاعل مستقرًا للمعلمات، الأس الهيدروجيني، العلاقة بين الحموضة المتطايرة والقلوية الكلية وإزالة الحمل العضوي. أفضل النتائج فيما يتعلق بمتوسط إنتاج الغاز الحيوي الحجمي (0.174 و 0.311 لتر من COD -1 ) لمعدل التحميل العضوي الأعلى (8 و 10 جم L -1 d -1 ، على التوالي) والميل الملحوظ هو أنه مع زيادة معدل التحميل العضوي، سيزداد إنتاج الغاز الحيوي المحدد بالإضافة إلى الإنتاج المحدد للميثان.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engenharia Agrícolaarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Engenharia Agrícola
    Article . 2018 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Engenharia Agrícola
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Engenharia Agrícola
    Article . 2018
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/14...
    Other literature type . 2018
    Data sources: Datacite
    https://dx.doi.org/10.60692/nz...
    Other literature type . 2018
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engenharia Agrícolaarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Engenharia Agrícola
      Article . 2018 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Engenharia Agrícola
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Engenharia Agrícola
      Article . 2018
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/14...
      Other literature type . 2018
      Data sources: Datacite
      https://dx.doi.org/10.60692/nz...
      Other literature type . 2018
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Izabela Regina Costa Araújo; Simone Damasceno Gomes; Tamiris Uana Tonello; Shaiane Dal'Maso Lucas; +2 Authors

    The aim of this study was to evaluate the behavior of an anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) were obtained for the higher organic loading rate (of 8 and 10 g L -1 d -1 , respectively) and the observed tendency is that with the increase of the organic loading rate, the specific biogas production will increase as well as the specific production of methane. The aim of this study was to evaluate the behavior of an anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) were obtained for the higher organic loading rate (of 8 and 10 g L -1 d -1 , respectively) and the observed tendency is that with the increase of the organic loading rate, the specific biogas production will increase as well as the specific production of methane. The aim of this study was to evaluate the behavior of anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) were obtained for the higher organic loading rate (of 8 and 10 g L -1 d -1 , respectively) and the observed tendency is that with the increase of the organic loading rate, the specific biogas production will increase as well as the specific production of methane. The aim of this study was to evaluate the behavior of anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) et la tendance observée est que, avec l'augmentation du taux de charge organique, la production spécifique de biogaz augmentera comme la production spécifique de méthane. كان الهدف من هذه الدراسة هو تقييم سلوك مفاعل لاهوائي ذو سرير معبأ وتدفق مستمر، فيما يتعلق بإنتاج الغاز الحيوي والميثان وإزالة الحمل العضوي، من مياه الصرف الصحي لاستخراج نشا المنيهوت. لهذا الغرض، تم اختباره، في مفاعل بحجم مفيد 2.82 لتر ومتوسط دعم من البولي بروبلين المملوء برغوة البولي إيثيلين، معدل التحميل العضوي (OLR) 2.5 و 5.0 و 8.0 و 10.0 جم L -1 d -1. تم تقييم إزالة COD، الأس الهيدروجيني ونسبة VA/TA والغاز الحيوي وإنتاج الميثان. استنتج من هذه الدراسة أنه من الممكن إنتاج الغاز الحيوي بنسب ميثان أعلى من 80 ٪ (كحد أقصى) وإزالة الحمل العضوي أكثر من 90 ٪ في ظل الظروف المختبرة. فيما يتعلق بالاستقرار، يمكن اعتبار المفاعل مستقرًا للمعلمات، الأس الهيدروجيني، العلاقة بين الحموضة المتطايرة والقلوية الكلية وإزالة الحمل العضوي. أفضل النتائج فيما يتعلق بمتوسط إنتاج الغاز الحيوي الحجمي (0.174 و 0.311 لتر من COD -1 ) لمعدل التحميل العضوي الأعلى (8 و 10 جم L -1 d -1 ، على التوالي) والميل الملحوظ هو أنه مع زيادة معدل التحميل العضوي، سيزداد إنتاج الغاز الحيوي المحدد بالإضافة إلى الإنتاج المحدد للميثان.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engenharia Agrícolaarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Engenharia Agrícola
    Article . 2018 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Engenharia Agrícola
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Engenharia Agrícola
    Article . 2018
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/14...
    Other literature type . 2018
    Data sources: Datacite
    https://dx.doi.org/10.60692/nz...
    Other literature type . 2018
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engenharia Agrícolaarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Engenharia Agrícola
      Article . 2018 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Engenharia Agrícola
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Engenharia Agrícola
      Article . 2018
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/14...
      Other literature type . 2018
      Data sources: Datacite
      https://dx.doi.org/10.60692/nz...
      Other literature type . 2018
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Izabela Regina Costa Araújo; Simone Damasceno Gomes; Tamiris Uana Tonello; Shaiane Dal'Maso Lucas; +2 Authors

    The aim of this study was to evaluate the behavior of an anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) were obtained for the higher organic loading rate (of 8 and 10 g L -1 d -1 , respectively) and the observed tendency is that with the increase of the organic loading rate, the specific biogas production will increase as well as the specific production of methane. The aim of this study was to evaluate the behavior of an anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) were obtained for the higher organic loading rate (of 8 and 10 g L -1 d -1 , respectively) and the observed tendency is that with the increase of the organic loading rate, the specific biogas production will increase as well as the specific production of methane. The aim of this study was to evaluate the behavior of anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) were obtained for the higher organic loading rate (of 8 and 10 g L -1 d -1 , respectively) and the observed tendency is that with the increase of the organic loading rate, the specific biogas production will increase as well as the specific production of methane. The aim of this study was to evaluate the behavior of anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) et la tendance observée est que, avec l'augmentation du taux de charge organique, la production spécifique de biogaz augmentera comme la production spécifique de méthane. كان الهدف من هذه الدراسة هو تقييم سلوك مفاعل لاهوائي ذو سرير معبأ وتدفق مستمر، فيما يتعلق بإنتاج الغاز الحيوي والميثان وإزالة الحمل العضوي، من مياه الصرف الصحي لاستخراج نشا المنيهوت. لهذا الغرض، تم اختباره، في مفاعل بحجم مفيد 2.82 لتر ومتوسط دعم من البولي بروبلين المملوء برغوة البولي إيثيلين، معدل التحميل العضوي (OLR) 2.5 و 5.0 و 8.0 و 10.0 جم L -1 d -1. تم تقييم إزالة COD، الأس الهيدروجيني ونسبة VA/TA والغاز الحيوي وإنتاج الميثان. استنتج من هذه الدراسة أنه من الممكن إنتاج الغاز الحيوي بنسب ميثان أعلى من 80 ٪ (كحد أقصى) وإزالة الحمل العضوي أكثر من 90 ٪ في ظل الظروف المختبرة. فيما يتعلق بالاستقرار، يمكن اعتبار المفاعل مستقرًا للمعلمات، الأس الهيدروجيني، العلاقة بين الحموضة المتطايرة والقلوية الكلية وإزالة الحمل العضوي. أفضل النتائج فيما يتعلق بمتوسط إنتاج الغاز الحيوي الحجمي (0.174 و 0.311 لتر من COD -1 ) لمعدل التحميل العضوي الأعلى (8 و 10 جم L -1 d -1 ، على التوالي) والميل الملحوظ هو أنه مع زيادة معدل التحميل العضوي، سيزداد إنتاج الغاز الحيوي المحدد بالإضافة إلى الإنتاج المحدد للميثان.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engenharia Agrícolaarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Engenharia Agrícola
    Article . 2018 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Engenharia Agrícola
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Engenharia Agrícola
    Article . 2018
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/14...
    Other literature type . 2018
    Data sources: Datacite
    https://dx.doi.org/10.60692/nz...
    Other literature type . 2018
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engenharia Agrícolaarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Engenharia Agrícola
      Article . 2018 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Engenharia Agrícola
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Engenharia Agrícola
      Article . 2018
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/14...
      Other literature type . 2018
      Data sources: Datacite
      https://dx.doi.org/10.60692/nz...
      Other literature type . 2018
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Izabela Regina Costa Araújo; Simone Damasceno Gomes; Tamiris Uana Tonello; Shaiane Dal'Maso Lucas; +2 Authors

    The aim of this study was to evaluate the behavior of an anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) were obtained for the higher organic loading rate (of 8 and 10 g L -1 d -1 , respectively) and the observed tendency is that with the increase of the organic loading rate, the specific biogas production will increase as well as the specific production of methane. The aim of this study was to evaluate the behavior of an anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) were obtained for the higher organic loading rate (of 8 and 10 g L -1 d -1 , respectively) and the observed tendency is that with the increase of the organic loading rate, the specific biogas production will increase as well as the specific production of methane. The aim of this study was to evaluate the behavior of anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) were obtained for the higher organic loading rate (of 8 and 10 g L -1 d -1 , respectively) and the observed tendency is that with the increase of the organic loading rate, the specific biogas production will increase as well as the specific production of methane. The aim of this study was to evaluate the behavior of anaerobic reactor of packed-bed and continuous flow, in relation to the biogas and methane production and the removal of organic load, from the wastewater of cassava starch extraction.For this purpose, were tested, in a reactor with a useful volume of 2.82 L and support mean of polypropylene filled with polyethylene foam, the organic loading rate (OLR) of 2.5, 5.0, 8.0 and 10.0 g L -1 d -1 .It was evaluated the removal of COD, the pH, the VA/TA ratio, the biogas and the methane production.It was concluded from this study that it is possible to produce biogas with methane percentages higher than 80% (maximum) and remove the organic load more than 90% under the tested conditions.In relation to stability, the reactor can be considered stable for the parameters, pH, the relationship between volatile acidity and total alkalinity and organic load removal.The best results in relation to the average volumetric biogas production (0.174 and 0.311 L g COD -1 ) et la tendance observée est que, avec l'augmentation du taux de charge organique, la production spécifique de biogaz augmentera comme la production spécifique de méthane. كان الهدف من هذه الدراسة هو تقييم سلوك مفاعل لاهوائي ذو سرير معبأ وتدفق مستمر، فيما يتعلق بإنتاج الغاز الحيوي والميثان وإزالة الحمل العضوي، من مياه الصرف الصحي لاستخراج نشا المنيهوت. لهذا الغرض، تم اختباره، في مفاعل بحجم مفيد 2.82 لتر ومتوسط دعم من البولي بروبلين المملوء برغوة البولي إيثيلين، معدل التحميل العضوي (OLR) 2.5 و 5.0 و 8.0 و 10.0 جم L -1 d -1. تم تقييم إزالة COD، الأس الهيدروجيني ونسبة VA/TA والغاز الحيوي وإنتاج الميثان. استنتج من هذه الدراسة أنه من الممكن إنتاج الغاز الحيوي بنسب ميثان أعلى من 80 ٪ (كحد أقصى) وإزالة الحمل العضوي أكثر من 90 ٪ في ظل الظروف المختبرة. فيما يتعلق بالاستقرار، يمكن اعتبار المفاعل مستقرًا للمعلمات، الأس الهيدروجيني، العلاقة بين الحموضة المتطايرة والقلوية الكلية وإزالة الحمل العضوي. أفضل النتائج فيما يتعلق بمتوسط إنتاج الغاز الحيوي الحجمي (0.174 و 0.311 لتر من COD -1 ) لمعدل التحميل العضوي الأعلى (8 و 10 جم L -1 d -1 ، على التوالي) والميل الملحوظ هو أنه مع زيادة معدل التحميل العضوي، سيزداد إنتاج الغاز الحيوي المحدد بالإضافة إلى الإنتاج المحدد للميثان.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engenharia Agrícolaarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Engenharia Agrícola
    Article . 2018 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Engenharia Agrícola
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Engenharia Agrícola
    Article . 2018
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/14...
    Other literature type . 2018
    Data sources: Datacite
    https://dx.doi.org/10.60692/nz...
    Other literature type . 2018
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engenharia Agrícolaarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Engenharia Agrícola
      Article . 2018 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Engenharia Agrícola
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Engenharia Agrícola
      Article . 2018
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/14...
      Other literature type . 2018
      Data sources: Datacite
      https://dx.doi.org/10.60692/nz...
      Other literature type . 2018
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph