- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:Wiley Funded by:EC | ARTESUNEC| ARTESUNKim, Young Yun; Yang, Tae Youl; Suhonen, Riikka; Välimäki, Marja; Maaninen, Tiina; Kemppainen, Antti; Jeon, Nam Joong; Seo; Jangwon;AbstractRecent advances in perovskite solar cells (PSCs) have resulted in greater than 23% efficiency with superior advantages such as flexibility and solution‐processability, allowing PSCs to be fabricated by a high‐throughput and low‐cost roll‐to‐roll (R2R) process. The development of scalable deposition processes is crucial to realize R2R production of flexible PSCs. Gravure printing is a promising candidate with the benefit of direct printing of the desired layer with arbitrary shape and size by using the R2R process. Here, flexible PSCs are fabricated by gravure printing. Printing inks and processing parameters are optimized to obtain smooth and uniform films. SnO2 nanoparticles are uniformly printed by reducing surface tension. Perovskite layers are successfully formed by optimizing the printing parameters and subsequent antisolvent bathing. 2,2′,7,7′‐Tetrakis‐(N,N‐di‐4‐methoxyphenylamino)‐9,9′‐spirobifluorene is also successfully printed. The all‐gravure‐printed device exhibits 17.2% champion efficiency, with 15.5% maximum power point tracking efficiency for 1000 s. Gravure‐printed flexible PSCs based on a two‐step deposition of perovskite layer are also demonstrated. Furthermore, a R2R process based on the gravure printing is demonstrated. The champion efficiency of 9.7% is achieved for partly R2R‐processed PSCs based on a two‐step fabrication of the perovskite layer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.201802094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 139 citations 139 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.201802094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:Wiley Funded by:EC | ARTESUNEC| ARTESUNKim, Young Yun; Yang, Tae Youl; Suhonen, Riikka; Välimäki, Marja; Maaninen, Tiina; Kemppainen, Antti; Jeon, Nam Joong; Seo; Jangwon;AbstractRecent advances in perovskite solar cells (PSCs) have resulted in greater than 23% efficiency with superior advantages such as flexibility and solution‐processability, allowing PSCs to be fabricated by a high‐throughput and low‐cost roll‐to‐roll (R2R) process. The development of scalable deposition processes is crucial to realize R2R production of flexible PSCs. Gravure printing is a promising candidate with the benefit of direct printing of the desired layer with arbitrary shape and size by using the R2R process. Here, flexible PSCs are fabricated by gravure printing. Printing inks and processing parameters are optimized to obtain smooth and uniform films. SnO2 nanoparticles are uniformly printed by reducing surface tension. Perovskite layers are successfully formed by optimizing the printing parameters and subsequent antisolvent bathing. 2,2′,7,7′‐Tetrakis‐(N,N‐di‐4‐methoxyphenylamino)‐9,9′‐spirobifluorene is also successfully printed. The all‐gravure‐printed device exhibits 17.2% champion efficiency, with 15.5% maximum power point tracking efficiency for 1000 s. Gravure‐printed flexible PSCs based on a two‐step deposition of perovskite layer are also demonstrated. Furthermore, a R2R process based on the gravure printing is demonstrated. The champion efficiency of 9.7% is achieved for partly R2R‐processed PSCs based on a two‐step fabrication of the perovskite layer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.201802094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 139 citations 139 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.201802094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu