- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 DenmarkPublisher:Elsevier BV Authors: Eberhard Morgenroth; Eberhard Morgenroth; Rejane Helena Ribeiro da Costa; Vincent Manguin; +6 AuthorsEberhard Morgenroth; Eberhard Morgenroth; Rejane Helena Ribeiro da Costa; Vincent Manguin; Jamile Wagner; Jamile Wagner; Nicolas Derlon; Nicolas Derlon; David G. Weissbrodt; David G. Weissbrodt;pmid: 26318648
The formation and application of aerobic granules for the treatment of real wastewaters still remains challenging. The high fraction of particulate organic matter (XS) present in real wastewaters can affect the granulation process. The present study aims at understanding to what extent the presence of XS affects the granule formation and the quality of the treated effluent. A second objective was to evaluate how the operating conditions of an aerobic granular sludge (AGS) reactor must be adapted to overcome the effects of the presence of XS. Two reactors fed with synthetic wastewaters were operated in absence (R1) or presence (R2) of starch as proxy for XS. Different operating conditions were evaluated. Our results indicated that the presence of XS in the wastewater reduces the kinetic of granule formation. After 52 d of operation, the fraction of granules reached only 21% in R2, while in R1 this fraction was of 54%. The granules grown in presence of XS had irregular and filamentous outgrowths in the surface, which affected the settleability of the biomass and therefore the quality of the effluent. An extension of the anaerobic phase in R2 led to the formation of more compact granules with a better settling ability. A high fraction of granules was obtained in both reactors after an increase of the selection pressure for fast-settling biomass, but the quality of the effluent remained low. Operating the reactors in a simultaneous fill-and-draw mode at a low selection pressure for fast-settling biomass showed to be beneficial for substrate removal efficiency and for suppressing filamentous overgrowth. Average removal efficiencies for total COD, soluble COD, ammonium, and phosphate were 87 ± 4%, 95 ± 1%, 92 ± 10%, and 87 ± 12% for R1, and 72 ± 12%, 86 ± 5%, 71 ± 12%, and 77 ± 11% for R2, respectively. Overall our study demonstrates that the operating conditions of AGS reactors must be adapted according to the wastewater composition. When treating effluents that contain XS, the selection pressure should be significantly reduced.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu96 citations 96 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 DenmarkPublisher:Elsevier BV Authors: Eberhard Morgenroth; Eberhard Morgenroth; Rejane Helena Ribeiro da Costa; Vincent Manguin; +6 AuthorsEberhard Morgenroth; Eberhard Morgenroth; Rejane Helena Ribeiro da Costa; Vincent Manguin; Jamile Wagner; Jamile Wagner; Nicolas Derlon; Nicolas Derlon; David G. Weissbrodt; David G. Weissbrodt;pmid: 26318648
The formation and application of aerobic granules for the treatment of real wastewaters still remains challenging. The high fraction of particulate organic matter (XS) present in real wastewaters can affect the granulation process. The present study aims at understanding to what extent the presence of XS affects the granule formation and the quality of the treated effluent. A second objective was to evaluate how the operating conditions of an aerobic granular sludge (AGS) reactor must be adapted to overcome the effects of the presence of XS. Two reactors fed with synthetic wastewaters were operated in absence (R1) or presence (R2) of starch as proxy for XS. Different operating conditions were evaluated. Our results indicated that the presence of XS in the wastewater reduces the kinetic of granule formation. After 52 d of operation, the fraction of granules reached only 21% in R2, while in R1 this fraction was of 54%. The granules grown in presence of XS had irregular and filamentous outgrowths in the surface, which affected the settleability of the biomass and therefore the quality of the effluent. An extension of the anaerobic phase in R2 led to the formation of more compact granules with a better settling ability. A high fraction of granules was obtained in both reactors after an increase of the selection pressure for fast-settling biomass, but the quality of the effluent remained low. Operating the reactors in a simultaneous fill-and-draw mode at a low selection pressure for fast-settling biomass showed to be beneficial for substrate removal efficiency and for suppressing filamentous overgrowth. Average removal efficiencies for total COD, soluble COD, ammonium, and phosphate were 87 ± 4%, 95 ± 1%, 92 ± 10%, and 87 ± 12% for R1, and 72 ± 12%, 86 ± 5%, 71 ± 12%, and 77 ± 11% for R2, respectively. Overall our study demonstrates that the operating conditions of AGS reactors must be adapted according to the wastewater composition. When treating effluents that contain XS, the selection pressure should be significantly reduced.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu96 citations 96 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jan 2015 Denmark, SwitzerlandPublisher:Elsevier BV Funded by:EC | ATHENEEC| ATHENEMichele Laureni; David G. Weissbrodt; Ilona Szivák; Orlane Robin; Jeppe Lund Nielsen; Eberhard Morgenroth; Adriano Joss;Direct treatment of municipal wastewater (MWW) based on anaerobic ammonium oxidizing (anammox) bacteria holds promise to turn the energy balance of wastewater treatment neutral or even positive. Currently, anammox processes are successfully implemented at full scale for the treatment of high-strength wastewaters, whereas the possibility of their mainstream application still needs to be confirmed. In this study, the growth of anammox organisms on aerobically pre-treated municipal wastewater (MWWpre-treated), amended with nitrite, was proven in three parallel reactors. The reactors were operated at total N concentrations in the range 5–20 mgN∙L−1, as expected for MWW. Anammox activities up to 465 mgN∙L−1∙d−1 were reached at 29 °C, with minimum doubling times of 18 d. Lowering the temperature to 12.5 °C resulted in a marked decrease in activity to 46 mgN∙L−1∙d−1 (79 days doubling time), still in a reasonable range for autotrophic nitrogen removal from MWW. During the experiment, the biomass evolved from a suspended growth inoculum to a hybrid system with suspended flocs and wall-attached biofilm. At the same time, MWWpre-treated had a direct impact on process performance. Changing the influent from synthetic medium to MWWpre-treated resulted in a two-month delay in net anammox growth and a two to three-fold increase in the estimated doubling times of the anammox organisms. Interestingly, anammox remained the primary nitrogen consumption route, and high-throughput 16S rRNA gene-targeted amplicon sequencing analyses revealed that the shift in performance was not associated with a shift in dominant anammox bacteria (“Candidatus Brocadia fulgida”). Furthermore, only limited heterotrophic denitrification was observed in the presence of easily biodegradable organics (acetate, glucose). The observed delays in net anammox growth were thus ascribed to the acclimatization of the initial anammox population or/and the development of a side population beneficial for them. Additionally, by combining microautoradiography and fluorescence in situ hybridization it was confirmed that the anammox organisms involved in the process did not directly incorporate or store the amended acetate and glucose. In conclusion, these investigations strongly support the feasibility of MWW treatment via anammox. Water Research, 80 ISSN:0043-1354 ISSN:1879-2448
Water Research arrow_drop_down http://dx.doi.org/doi.org/10.1...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.04.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 217 citations 217 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Water Research arrow_drop_down http://dx.doi.org/doi.org/10.1...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.04.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jan 2015 Denmark, SwitzerlandPublisher:Elsevier BV Funded by:EC | ATHENEEC| ATHENEMichele Laureni; David G. Weissbrodt; Ilona Szivák; Orlane Robin; Jeppe Lund Nielsen; Eberhard Morgenroth; Adriano Joss;Direct treatment of municipal wastewater (MWW) based on anaerobic ammonium oxidizing (anammox) bacteria holds promise to turn the energy balance of wastewater treatment neutral or even positive. Currently, anammox processes are successfully implemented at full scale for the treatment of high-strength wastewaters, whereas the possibility of their mainstream application still needs to be confirmed. In this study, the growth of anammox organisms on aerobically pre-treated municipal wastewater (MWWpre-treated), amended with nitrite, was proven in three parallel reactors. The reactors were operated at total N concentrations in the range 5–20 mgN∙L−1, as expected for MWW. Anammox activities up to 465 mgN∙L−1∙d−1 were reached at 29 °C, with minimum doubling times of 18 d. Lowering the temperature to 12.5 °C resulted in a marked decrease in activity to 46 mgN∙L−1∙d−1 (79 days doubling time), still in a reasonable range for autotrophic nitrogen removal from MWW. During the experiment, the biomass evolved from a suspended growth inoculum to a hybrid system with suspended flocs and wall-attached biofilm. At the same time, MWWpre-treated had a direct impact on process performance. Changing the influent from synthetic medium to MWWpre-treated resulted in a two-month delay in net anammox growth and a two to three-fold increase in the estimated doubling times of the anammox organisms. Interestingly, anammox remained the primary nitrogen consumption route, and high-throughput 16S rRNA gene-targeted amplicon sequencing analyses revealed that the shift in performance was not associated with a shift in dominant anammox bacteria (“Candidatus Brocadia fulgida”). Furthermore, only limited heterotrophic denitrification was observed in the presence of easily biodegradable organics (acetate, glucose). The observed delays in net anammox growth were thus ascribed to the acclimatization of the initial anammox population or/and the development of a side population beneficial for them. Additionally, by combining microautoradiography and fluorescence in situ hybridization it was confirmed that the anammox organisms involved in the process did not directly incorporate or store the amended acetate and glucose. In conclusion, these investigations strongly support the feasibility of MWW treatment via anammox. Water Research, 80 ISSN:0043-1354 ISSN:1879-2448
Water Research arrow_drop_down http://dx.doi.org/doi.org/10.1...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.04.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 217 citations 217 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Water Research arrow_drop_down http://dx.doi.org/doi.org/10.1...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.04.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Understanding and tailori...SNSF| Understanding and tailoring aerobic granular sludge wastewater treatment systemsAuthors: David G. Weissbrodt; Guillaume S. Schneiter; Jean-Marie Fürbringer; Christof Holliger;pmid: 24200006
Nutrient removal performances of sequencing batch reactors using granular sludge for intensified biological wastewater treatment rely on optimal underlying microbial selection. Trigger factors of bacterial selection and nutrient removal were investigated in these novel biofilm systems with specific emphasis on polyphosphate- (PAO) and glycogen-accumulating organisms (GAO) mainly affiliated with Accumulibacter and Competibacter, respectively. In a first dynamic reactor operated with stepwise changes in concentration and ratio of acetate and propionate (Ac/Pr) under anaerobic feeding and aerobic starvation conditions and without wasting sludge periodically, propionate favorably selected for Accumulibacter (35% relative abundance) and stable production of granular biomass. A Plackett-Burman multifactorial experimental design was then used to screen in eight runs of 50 days at stable sludge retention time of 15 days for the main effects of COD concentration, Ac/Pr ratio, COD/P ratio, pH, temperature, and redox conditions during starvation. At 95% confidence level, pH was mainly triggering direct Accumulibacter selection and nutrient removal. The overall PAO/GAO competition in granular sludge was statistically equally impacted by pH, temperature, and redox factors. High Accumulibacter abundances (30-47%), PAO/GAO ratios (2.8-8.4), and phosphorus removal (80-100%) were selected by slightly alkaline (pH > 7.3) and lower mesophilic (<20 °C) conditions, and under full aeration during fixed 2-h starvation. Nitrogen removal by nitrification and denitrification (84-97%) was positively correlated to pH and temperature. In addition to alkalinity, non-limited organic conditions, 3-carbon propionate substrate, sludge age control, and phase length adaptation under alternating aerobic-anoxic conditions during starvation can lead to efficient nutrient-removing granular sludge biofilm systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2013.08.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2013.08.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Understanding and tailori...SNSF| Understanding and tailoring aerobic granular sludge wastewater treatment systemsAuthors: David G. Weissbrodt; Guillaume S. Schneiter; Jean-Marie Fürbringer; Christof Holliger;pmid: 24200006
Nutrient removal performances of sequencing batch reactors using granular sludge for intensified biological wastewater treatment rely on optimal underlying microbial selection. Trigger factors of bacterial selection and nutrient removal were investigated in these novel biofilm systems with specific emphasis on polyphosphate- (PAO) and glycogen-accumulating organisms (GAO) mainly affiliated with Accumulibacter and Competibacter, respectively. In a first dynamic reactor operated with stepwise changes in concentration and ratio of acetate and propionate (Ac/Pr) under anaerobic feeding and aerobic starvation conditions and without wasting sludge periodically, propionate favorably selected for Accumulibacter (35% relative abundance) and stable production of granular biomass. A Plackett-Burman multifactorial experimental design was then used to screen in eight runs of 50 days at stable sludge retention time of 15 days for the main effects of COD concentration, Ac/Pr ratio, COD/P ratio, pH, temperature, and redox conditions during starvation. At 95% confidence level, pH was mainly triggering direct Accumulibacter selection and nutrient removal. The overall PAO/GAO competition in granular sludge was statistically equally impacted by pH, temperature, and redox factors. High Accumulibacter abundances (30-47%), PAO/GAO ratios (2.8-8.4), and phosphorus removal (80-100%) were selected by slightly alkaline (pH > 7.3) and lower mesophilic (<20 °C) conditions, and under full aeration during fixed 2-h starvation. Nitrogen removal by nitrification and denitrification (84-97%) was positively correlated to pH and temperature. In addition to alkalinity, non-limited organic conditions, 3-carbon propionate substrate, sludge age control, and phase length adaptation under alternating aerobic-anoxic conditions during starvation can lead to efficient nutrient-removing granular sludge biofilm systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2013.08.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2013.08.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 CanadaPublisher:Wiley Authors: De Almeida, Maria Paula Giulianetti; Mondini, Camille; Bruant, Guillaume; Tremblay, Julien; +2 AuthorsDe Almeida, Maria Paula Giulianetti; Mondini, Camille; Bruant, Guillaume; Tremblay, Julien; Weissbrodt, David G.; Mockaitis, Gustavo;AbstractBACKGROUNDCarboxylates such as volatile fatty acids (VFA) can be produced by acidogenic fermentation (AF) of dairy wastes including cheese whey, a massive residue produced at 160.67 million m3 of which 42% are not valorized and impact the environment. In mixed‐culture fermentations, selection pressures can favor AF and halt methanogenesis. In this study, inoculum pre‐treatment was evaluated as a selective pressure for AF demineralized cheese whey in batches. Alkaline (NaOH, pH 8.0, 6 h) and thermal (90 °C for 5 min, ice‐bath until 23 °C) pre‐treatments were tested with batch operations runs at initial pH 7.0 and 9.0, food‐to‐microorganism (F/M) ratios of 0.5 to 4.0 g COD g−1 VS, and under pressurized (P) and nonpressurized (NP) headspace, in experiments duplicated in two different research institutes.RESULTSAcetic acid was highly produced on both Unicamp and TU Delft samples (1.36 and 1.40 g CODAcOH L−1, respectively), at the expense of methanogenesis by combining a thermal pre‐treatment of inoculum with a NP batch operation started at pH 9.0. Microbial communities comprising VFA and alcohol producers, such as Clostridium, Fonticella and Intestinimonas, and fermenters such as Longilinea and Leptolinea. The lipid‐accumulating Candidatus microthrix was observed in both bulk material and foam. Despite the absence of methane production, Methanosaeta were detected within the microbial community. An F/M ratio of 0.5 g COD g−1 VS led to the best VFA production of 1769.4 mg L−1.CONCLUSIONOverall, inoculum thermal pre‐treatment, initial pH 9.0 and NP headspace acted as a selective pressure for halting methanogenesis and producing VFAs, valorizing cheese whey via batch acidogenic fermentation. © 2024 Society of Chemical Industry (SCI).
Journal of Chemical ... arrow_drop_down Journal of Chemical Technology & BiotechnologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jctb.7607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Chemical ... arrow_drop_down Journal of Chemical Technology & BiotechnologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jctb.7607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 CanadaPublisher:Wiley Authors: De Almeida, Maria Paula Giulianetti; Mondini, Camille; Bruant, Guillaume; Tremblay, Julien; +2 AuthorsDe Almeida, Maria Paula Giulianetti; Mondini, Camille; Bruant, Guillaume; Tremblay, Julien; Weissbrodt, David G.; Mockaitis, Gustavo;AbstractBACKGROUNDCarboxylates such as volatile fatty acids (VFA) can be produced by acidogenic fermentation (AF) of dairy wastes including cheese whey, a massive residue produced at 160.67 million m3 of which 42% are not valorized and impact the environment. In mixed‐culture fermentations, selection pressures can favor AF and halt methanogenesis. In this study, inoculum pre‐treatment was evaluated as a selective pressure for AF demineralized cheese whey in batches. Alkaline (NaOH, pH 8.0, 6 h) and thermal (90 °C for 5 min, ice‐bath until 23 °C) pre‐treatments were tested with batch operations runs at initial pH 7.0 and 9.0, food‐to‐microorganism (F/M) ratios of 0.5 to 4.0 g COD g−1 VS, and under pressurized (P) and nonpressurized (NP) headspace, in experiments duplicated in two different research institutes.RESULTSAcetic acid was highly produced on both Unicamp and TU Delft samples (1.36 and 1.40 g CODAcOH L−1, respectively), at the expense of methanogenesis by combining a thermal pre‐treatment of inoculum with a NP batch operation started at pH 9.0. Microbial communities comprising VFA and alcohol producers, such as Clostridium, Fonticella and Intestinimonas, and fermenters such as Longilinea and Leptolinea. The lipid‐accumulating Candidatus microthrix was observed in both bulk material and foam. Despite the absence of methane production, Methanosaeta were detected within the microbial community. An F/M ratio of 0.5 g COD g−1 VS led to the best VFA production of 1769.4 mg L−1.CONCLUSIONOverall, inoculum thermal pre‐treatment, initial pH 9.0 and NP headspace acted as a selective pressure for halting methanogenesis and producing VFAs, valorizing cheese whey via batch acidogenic fermentation. © 2024 Society of Chemical Industry (SCI).
Journal of Chemical ... arrow_drop_down Journal of Chemical Technology & BiotechnologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jctb.7607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Chemical ... arrow_drop_down Journal of Chemical Technology & BiotechnologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jctb.7607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Spain, United States, SpainPublisher:Springer Science and Business Media LLC Funded by:NSERC, NSF | Unraveling regulatory net..., NSF | Regulatory Signaling Logi... +6 projectsNSERC ,NSF| Unraveling regulatory networks in biological nutrient removal (BNR) microbiomes ,NSF| Regulatory Signaling Logic In Self-Assembled Microbial Communities During Oscillating Environmental Conditions ,NSF| RII Track-2 FEC: Building Genome-to-Phenome Infrastructure for Regulating Methane in Deep and Extreme Environments (BuG ReMeDEE) ,SNSF| Systems microbiology of alginate polysaccharides biosynthesis from granular sludge biofilms to waste-based biorefining in mixed-culture microbial processes ,NSF| An evolutionary approach to enable reprogramming of non-ribosomal peptide enzymology ,NWO| Transmission of Antimicrobial Resistance Genes and Engineered DNA from Transgenic Biosystems in Nature ,NSF| Collaborative Research: SusChEM: Unlocking the fundamental mechanisms that underlie selectivity in oleochemical producing enzymes ,NSF| Dimensions: Collaborative Research: the role of microbial biodiversity in controlling nitrous oxide emissions from soilsAuthors: Katherine D. McMahon; Hector Garcia Martin; Lutgarde Raskin; Michelle A. O’Malley; +12 AuthorsKatherine D. McMahon; Hector Garcia Martin; Lutgarde Raskin; Michelle A. O’Malley; Michelle A. O’Malley; William R. Harcombe; Christopher E. Lawson; Ophelia S. Venturelli; Frank E. Löffler; Frank E. Löffler; Daniel R. Noguera; Daniel R. Noguera; Stephen R. Lindemann; David G. Weissbrodt; Roland Hatzenpichler; Brian F. Pfleger;Despite broad scientific interest in harnessing the power of Earth's microbiomes, knowledge gaps hinder their efficient use for addressing urgent societal and environmental challenges. We argue that structuring research and technology developments around a design-build-test-learn (DBTL) cycle will advance microbiome engineering and spur new discoveries of the basic scientific principles governing microbiome function. In this Review, we present key elements of an iterative DBTL cycle for microbiome engineering, focusing on generalizable approaches, including top-down and bottom-up design processes, synthetic and self-assembled construction methods, and emerging tools to analyse microbiome function. These approaches can be used to harness microbiomes for broad applications related to medicine, agriculture, energy and the environment. We also discuss key challenges and opportunities of each approach and synthesize them into best practice guidelines for engineering microbiomes. We anticipate that adoption of a DBTL framework will rapidly advance microbiome-based biotechnologies aimed at improving human and animal health, agriculture and enabling the bioeconomy.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/0d11f5zqData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTABCAM's Institutional Repository DataArticle . 2019License: CC BY NC SAData sources: BCAM's Institutional Repository DataNature Reviews MicrobiologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-019-0255-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 398 citations 398 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/0d11f5zqData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTABCAM's Institutional Repository DataArticle . 2019License: CC BY NC SAData sources: BCAM's Institutional Repository DataNature Reviews MicrobiologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-019-0255-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Spain, United States, SpainPublisher:Springer Science and Business Media LLC Funded by:NSERC, NSF | Unraveling regulatory net..., NSF | Regulatory Signaling Logi... +6 projectsNSERC ,NSF| Unraveling regulatory networks in biological nutrient removal (BNR) microbiomes ,NSF| Regulatory Signaling Logic In Self-Assembled Microbial Communities During Oscillating Environmental Conditions ,NSF| RII Track-2 FEC: Building Genome-to-Phenome Infrastructure for Regulating Methane in Deep and Extreme Environments (BuG ReMeDEE) ,SNSF| Systems microbiology of alginate polysaccharides biosynthesis from granular sludge biofilms to waste-based biorefining in mixed-culture microbial processes ,NSF| An evolutionary approach to enable reprogramming of non-ribosomal peptide enzymology ,NWO| Transmission of Antimicrobial Resistance Genes and Engineered DNA from Transgenic Biosystems in Nature ,NSF| Collaborative Research: SusChEM: Unlocking the fundamental mechanisms that underlie selectivity in oleochemical producing enzymes ,NSF| Dimensions: Collaborative Research: the role of microbial biodiversity in controlling nitrous oxide emissions from soilsAuthors: Katherine D. McMahon; Hector Garcia Martin; Lutgarde Raskin; Michelle A. O’Malley; +12 AuthorsKatherine D. McMahon; Hector Garcia Martin; Lutgarde Raskin; Michelle A. O’Malley; Michelle A. O’Malley; William R. Harcombe; Christopher E. Lawson; Ophelia S. Venturelli; Frank E. Löffler; Frank E. Löffler; Daniel R. Noguera; Daniel R. Noguera; Stephen R. Lindemann; David G. Weissbrodt; Roland Hatzenpichler; Brian F. Pfleger;Despite broad scientific interest in harnessing the power of Earth's microbiomes, knowledge gaps hinder their efficient use for addressing urgent societal and environmental challenges. We argue that structuring research and technology developments around a design-build-test-learn (DBTL) cycle will advance microbiome engineering and spur new discoveries of the basic scientific principles governing microbiome function. In this Review, we present key elements of an iterative DBTL cycle for microbiome engineering, focusing on generalizable approaches, including top-down and bottom-up design processes, synthetic and self-assembled construction methods, and emerging tools to analyse microbiome function. These approaches can be used to harness microbiomes for broad applications related to medicine, agriculture, energy and the environment. We also discuss key challenges and opportunities of each approach and synthesize them into best practice guidelines for engineering microbiomes. We anticipate that adoption of a DBTL framework will rapidly advance microbiome-based biotechnologies aimed at improving human and animal health, agriculture and enabling the bioeconomy.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/0d11f5zqData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTABCAM's Institutional Repository DataArticle . 2019License: CC BY NC SAData sources: BCAM's Institutional Repository DataNature Reviews MicrobiologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-019-0255-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 398 citations 398 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/0d11f5zqData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTABCAM's Institutional Repository DataArticle . 2019License: CC BY NC SAData sources: BCAM's Institutional Repository DataNature Reviews MicrobiologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-019-0255-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 DenmarkPublisher:Elsevier BV Authors: Eberhard Morgenroth; Eberhard Morgenroth; Rejane Helena Ribeiro da Costa; Vincent Manguin; +6 AuthorsEberhard Morgenroth; Eberhard Morgenroth; Rejane Helena Ribeiro da Costa; Vincent Manguin; Jamile Wagner; Jamile Wagner; Nicolas Derlon; Nicolas Derlon; David G. Weissbrodt; David G. Weissbrodt;pmid: 26318648
The formation and application of aerobic granules for the treatment of real wastewaters still remains challenging. The high fraction of particulate organic matter (XS) present in real wastewaters can affect the granulation process. The present study aims at understanding to what extent the presence of XS affects the granule formation and the quality of the treated effluent. A second objective was to evaluate how the operating conditions of an aerobic granular sludge (AGS) reactor must be adapted to overcome the effects of the presence of XS. Two reactors fed with synthetic wastewaters were operated in absence (R1) or presence (R2) of starch as proxy for XS. Different operating conditions were evaluated. Our results indicated that the presence of XS in the wastewater reduces the kinetic of granule formation. After 52 d of operation, the fraction of granules reached only 21% in R2, while in R1 this fraction was of 54%. The granules grown in presence of XS had irregular and filamentous outgrowths in the surface, which affected the settleability of the biomass and therefore the quality of the effluent. An extension of the anaerobic phase in R2 led to the formation of more compact granules with a better settling ability. A high fraction of granules was obtained in both reactors after an increase of the selection pressure for fast-settling biomass, but the quality of the effluent remained low. Operating the reactors in a simultaneous fill-and-draw mode at a low selection pressure for fast-settling biomass showed to be beneficial for substrate removal efficiency and for suppressing filamentous overgrowth. Average removal efficiencies for total COD, soluble COD, ammonium, and phosphate were 87 ± 4%, 95 ± 1%, 92 ± 10%, and 87 ± 12% for R1, and 72 ± 12%, 86 ± 5%, 71 ± 12%, and 77 ± 11% for R2, respectively. Overall our study demonstrates that the operating conditions of AGS reactors must be adapted according to the wastewater composition. When treating effluents that contain XS, the selection pressure should be significantly reduced.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu96 citations 96 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 DenmarkPublisher:Elsevier BV Authors: Eberhard Morgenroth; Eberhard Morgenroth; Rejane Helena Ribeiro da Costa; Vincent Manguin; +6 AuthorsEberhard Morgenroth; Eberhard Morgenroth; Rejane Helena Ribeiro da Costa; Vincent Manguin; Jamile Wagner; Jamile Wagner; Nicolas Derlon; Nicolas Derlon; David G. Weissbrodt; David G. Weissbrodt;pmid: 26318648
The formation and application of aerobic granules for the treatment of real wastewaters still remains challenging. The high fraction of particulate organic matter (XS) present in real wastewaters can affect the granulation process. The present study aims at understanding to what extent the presence of XS affects the granule formation and the quality of the treated effluent. A second objective was to evaluate how the operating conditions of an aerobic granular sludge (AGS) reactor must be adapted to overcome the effects of the presence of XS. Two reactors fed with synthetic wastewaters were operated in absence (R1) or presence (R2) of starch as proxy for XS. Different operating conditions were evaluated. Our results indicated that the presence of XS in the wastewater reduces the kinetic of granule formation. After 52 d of operation, the fraction of granules reached only 21% in R2, while in R1 this fraction was of 54%. The granules grown in presence of XS had irregular and filamentous outgrowths in the surface, which affected the settleability of the biomass and therefore the quality of the effluent. An extension of the anaerobic phase in R2 led to the formation of more compact granules with a better settling ability. A high fraction of granules was obtained in both reactors after an increase of the selection pressure for fast-settling biomass, but the quality of the effluent remained low. Operating the reactors in a simultaneous fill-and-draw mode at a low selection pressure for fast-settling biomass showed to be beneficial for substrate removal efficiency and for suppressing filamentous overgrowth. Average removal efficiencies for total COD, soluble COD, ammonium, and phosphate were 87 ± 4%, 95 ± 1%, 92 ± 10%, and 87 ± 12% for R1, and 72 ± 12%, 86 ± 5%, 71 ± 12%, and 77 ± 11% for R2, respectively. Overall our study demonstrates that the operating conditions of AGS reactors must be adapted according to the wastewater composition. When treating effluents that contain XS, the selection pressure should be significantly reduced.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu96 citations 96 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jan 2015 Denmark, SwitzerlandPublisher:Elsevier BV Funded by:EC | ATHENEEC| ATHENEMichele Laureni; David G. Weissbrodt; Ilona Szivák; Orlane Robin; Jeppe Lund Nielsen; Eberhard Morgenroth; Adriano Joss;Direct treatment of municipal wastewater (MWW) based on anaerobic ammonium oxidizing (anammox) bacteria holds promise to turn the energy balance of wastewater treatment neutral or even positive. Currently, anammox processes are successfully implemented at full scale for the treatment of high-strength wastewaters, whereas the possibility of their mainstream application still needs to be confirmed. In this study, the growth of anammox organisms on aerobically pre-treated municipal wastewater (MWWpre-treated), amended with nitrite, was proven in three parallel reactors. The reactors were operated at total N concentrations in the range 5–20 mgN∙L−1, as expected for MWW. Anammox activities up to 465 mgN∙L−1∙d−1 were reached at 29 °C, with minimum doubling times of 18 d. Lowering the temperature to 12.5 °C resulted in a marked decrease in activity to 46 mgN∙L−1∙d−1 (79 days doubling time), still in a reasonable range for autotrophic nitrogen removal from MWW. During the experiment, the biomass evolved from a suspended growth inoculum to a hybrid system with suspended flocs and wall-attached biofilm. At the same time, MWWpre-treated had a direct impact on process performance. Changing the influent from synthetic medium to MWWpre-treated resulted in a two-month delay in net anammox growth and a two to three-fold increase in the estimated doubling times of the anammox organisms. Interestingly, anammox remained the primary nitrogen consumption route, and high-throughput 16S rRNA gene-targeted amplicon sequencing analyses revealed that the shift in performance was not associated with a shift in dominant anammox bacteria (“Candidatus Brocadia fulgida”). Furthermore, only limited heterotrophic denitrification was observed in the presence of easily biodegradable organics (acetate, glucose). The observed delays in net anammox growth were thus ascribed to the acclimatization of the initial anammox population or/and the development of a side population beneficial for them. Additionally, by combining microautoradiography and fluorescence in situ hybridization it was confirmed that the anammox organisms involved in the process did not directly incorporate or store the amended acetate and glucose. In conclusion, these investigations strongly support the feasibility of MWW treatment via anammox. Water Research, 80 ISSN:0043-1354 ISSN:1879-2448
Water Research arrow_drop_down http://dx.doi.org/doi.org/10.1...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.04.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 217 citations 217 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Water Research arrow_drop_down http://dx.doi.org/doi.org/10.1...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.04.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jan 2015 Denmark, SwitzerlandPublisher:Elsevier BV Funded by:EC | ATHENEEC| ATHENEMichele Laureni; David G. Weissbrodt; Ilona Szivák; Orlane Robin; Jeppe Lund Nielsen; Eberhard Morgenroth; Adriano Joss;Direct treatment of municipal wastewater (MWW) based on anaerobic ammonium oxidizing (anammox) bacteria holds promise to turn the energy balance of wastewater treatment neutral or even positive. Currently, anammox processes are successfully implemented at full scale for the treatment of high-strength wastewaters, whereas the possibility of their mainstream application still needs to be confirmed. In this study, the growth of anammox organisms on aerobically pre-treated municipal wastewater (MWWpre-treated), amended with nitrite, was proven in three parallel reactors. The reactors were operated at total N concentrations in the range 5–20 mgN∙L−1, as expected for MWW. Anammox activities up to 465 mgN∙L−1∙d−1 were reached at 29 °C, with minimum doubling times of 18 d. Lowering the temperature to 12.5 °C resulted in a marked decrease in activity to 46 mgN∙L−1∙d−1 (79 days doubling time), still in a reasonable range for autotrophic nitrogen removal from MWW. During the experiment, the biomass evolved from a suspended growth inoculum to a hybrid system with suspended flocs and wall-attached biofilm. At the same time, MWWpre-treated had a direct impact on process performance. Changing the influent from synthetic medium to MWWpre-treated resulted in a two-month delay in net anammox growth and a two to three-fold increase in the estimated doubling times of the anammox organisms. Interestingly, anammox remained the primary nitrogen consumption route, and high-throughput 16S rRNA gene-targeted amplicon sequencing analyses revealed that the shift in performance was not associated with a shift in dominant anammox bacteria (“Candidatus Brocadia fulgida”). Furthermore, only limited heterotrophic denitrification was observed in the presence of easily biodegradable organics (acetate, glucose). The observed delays in net anammox growth were thus ascribed to the acclimatization of the initial anammox population or/and the development of a side population beneficial for them. Additionally, by combining microautoradiography and fluorescence in situ hybridization it was confirmed that the anammox organisms involved in the process did not directly incorporate or store the amended acetate and glucose. In conclusion, these investigations strongly support the feasibility of MWW treatment via anammox. Water Research, 80 ISSN:0043-1354 ISSN:1879-2448
Water Research arrow_drop_down http://dx.doi.org/doi.org/10.1...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.04.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 217 citations 217 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Water Research arrow_drop_down http://dx.doi.org/doi.org/10.1...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.04.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Understanding and tailori...SNSF| Understanding and tailoring aerobic granular sludge wastewater treatment systemsAuthors: David G. Weissbrodt; Guillaume S. Schneiter; Jean-Marie Fürbringer; Christof Holliger;pmid: 24200006
Nutrient removal performances of sequencing batch reactors using granular sludge for intensified biological wastewater treatment rely on optimal underlying microbial selection. Trigger factors of bacterial selection and nutrient removal were investigated in these novel biofilm systems with specific emphasis on polyphosphate- (PAO) and glycogen-accumulating organisms (GAO) mainly affiliated with Accumulibacter and Competibacter, respectively. In a first dynamic reactor operated with stepwise changes in concentration and ratio of acetate and propionate (Ac/Pr) under anaerobic feeding and aerobic starvation conditions and without wasting sludge periodically, propionate favorably selected for Accumulibacter (35% relative abundance) and stable production of granular biomass. A Plackett-Burman multifactorial experimental design was then used to screen in eight runs of 50 days at stable sludge retention time of 15 days for the main effects of COD concentration, Ac/Pr ratio, COD/P ratio, pH, temperature, and redox conditions during starvation. At 95% confidence level, pH was mainly triggering direct Accumulibacter selection and nutrient removal. The overall PAO/GAO competition in granular sludge was statistically equally impacted by pH, temperature, and redox factors. High Accumulibacter abundances (30-47%), PAO/GAO ratios (2.8-8.4), and phosphorus removal (80-100%) were selected by slightly alkaline (pH > 7.3) and lower mesophilic (<20 °C) conditions, and under full aeration during fixed 2-h starvation. Nitrogen removal by nitrification and denitrification (84-97%) was positively correlated to pH and temperature. In addition to alkalinity, non-limited organic conditions, 3-carbon propionate substrate, sludge age control, and phase length adaptation under alternating aerobic-anoxic conditions during starvation can lead to efficient nutrient-removing granular sludge biofilm systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2013.08.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2013.08.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Understanding and tailori...SNSF| Understanding and tailoring aerobic granular sludge wastewater treatment systemsAuthors: David G. Weissbrodt; Guillaume S. Schneiter; Jean-Marie Fürbringer; Christof Holliger;pmid: 24200006
Nutrient removal performances of sequencing batch reactors using granular sludge for intensified biological wastewater treatment rely on optimal underlying microbial selection. Trigger factors of bacterial selection and nutrient removal were investigated in these novel biofilm systems with specific emphasis on polyphosphate- (PAO) and glycogen-accumulating organisms (GAO) mainly affiliated with Accumulibacter and Competibacter, respectively. In a first dynamic reactor operated with stepwise changes in concentration and ratio of acetate and propionate (Ac/Pr) under anaerobic feeding and aerobic starvation conditions and without wasting sludge periodically, propionate favorably selected for Accumulibacter (35% relative abundance) and stable production of granular biomass. A Plackett-Burman multifactorial experimental design was then used to screen in eight runs of 50 days at stable sludge retention time of 15 days for the main effects of COD concentration, Ac/Pr ratio, COD/P ratio, pH, temperature, and redox conditions during starvation. At 95% confidence level, pH was mainly triggering direct Accumulibacter selection and nutrient removal. The overall PAO/GAO competition in granular sludge was statistically equally impacted by pH, temperature, and redox factors. High Accumulibacter abundances (30-47%), PAO/GAO ratios (2.8-8.4), and phosphorus removal (80-100%) were selected by slightly alkaline (pH > 7.3) and lower mesophilic (<20 °C) conditions, and under full aeration during fixed 2-h starvation. Nitrogen removal by nitrification and denitrification (84-97%) was positively correlated to pH and temperature. In addition to alkalinity, non-limited organic conditions, 3-carbon propionate substrate, sludge age control, and phase length adaptation under alternating aerobic-anoxic conditions during starvation can lead to efficient nutrient-removing granular sludge biofilm systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2013.08.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2013.08.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 CanadaPublisher:Wiley Authors: De Almeida, Maria Paula Giulianetti; Mondini, Camille; Bruant, Guillaume; Tremblay, Julien; +2 AuthorsDe Almeida, Maria Paula Giulianetti; Mondini, Camille; Bruant, Guillaume; Tremblay, Julien; Weissbrodt, David G.; Mockaitis, Gustavo;AbstractBACKGROUNDCarboxylates such as volatile fatty acids (VFA) can be produced by acidogenic fermentation (AF) of dairy wastes including cheese whey, a massive residue produced at 160.67 million m3 of which 42% are not valorized and impact the environment. In mixed‐culture fermentations, selection pressures can favor AF and halt methanogenesis. In this study, inoculum pre‐treatment was evaluated as a selective pressure for AF demineralized cheese whey in batches. Alkaline (NaOH, pH 8.0, 6 h) and thermal (90 °C for 5 min, ice‐bath until 23 °C) pre‐treatments were tested with batch operations runs at initial pH 7.0 and 9.0, food‐to‐microorganism (F/M) ratios of 0.5 to 4.0 g COD g−1 VS, and under pressurized (P) and nonpressurized (NP) headspace, in experiments duplicated in two different research institutes.RESULTSAcetic acid was highly produced on both Unicamp and TU Delft samples (1.36 and 1.40 g CODAcOH L−1, respectively), at the expense of methanogenesis by combining a thermal pre‐treatment of inoculum with a NP batch operation started at pH 9.0. Microbial communities comprising VFA and alcohol producers, such as Clostridium, Fonticella and Intestinimonas, and fermenters such as Longilinea and Leptolinea. The lipid‐accumulating Candidatus microthrix was observed in both bulk material and foam. Despite the absence of methane production, Methanosaeta were detected within the microbial community. An F/M ratio of 0.5 g COD g−1 VS led to the best VFA production of 1769.4 mg L−1.CONCLUSIONOverall, inoculum thermal pre‐treatment, initial pH 9.0 and NP headspace acted as a selective pressure for halting methanogenesis and producing VFAs, valorizing cheese whey via batch acidogenic fermentation. © 2024 Society of Chemical Industry (SCI).
Journal of Chemical ... arrow_drop_down Journal of Chemical Technology & BiotechnologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jctb.7607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Chemical ... arrow_drop_down Journal of Chemical Technology & BiotechnologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jctb.7607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 CanadaPublisher:Wiley Authors: De Almeida, Maria Paula Giulianetti; Mondini, Camille; Bruant, Guillaume; Tremblay, Julien; +2 AuthorsDe Almeida, Maria Paula Giulianetti; Mondini, Camille; Bruant, Guillaume; Tremblay, Julien; Weissbrodt, David G.; Mockaitis, Gustavo;AbstractBACKGROUNDCarboxylates such as volatile fatty acids (VFA) can be produced by acidogenic fermentation (AF) of dairy wastes including cheese whey, a massive residue produced at 160.67 million m3 of which 42% are not valorized and impact the environment. In mixed‐culture fermentations, selection pressures can favor AF and halt methanogenesis. In this study, inoculum pre‐treatment was evaluated as a selective pressure for AF demineralized cheese whey in batches. Alkaline (NaOH, pH 8.0, 6 h) and thermal (90 °C for 5 min, ice‐bath until 23 °C) pre‐treatments were tested with batch operations runs at initial pH 7.0 and 9.0, food‐to‐microorganism (F/M) ratios of 0.5 to 4.0 g COD g−1 VS, and under pressurized (P) and nonpressurized (NP) headspace, in experiments duplicated in two different research institutes.RESULTSAcetic acid was highly produced on both Unicamp and TU Delft samples (1.36 and 1.40 g CODAcOH L−1, respectively), at the expense of methanogenesis by combining a thermal pre‐treatment of inoculum with a NP batch operation started at pH 9.0. Microbial communities comprising VFA and alcohol producers, such as Clostridium, Fonticella and Intestinimonas, and fermenters such as Longilinea and Leptolinea. The lipid‐accumulating Candidatus microthrix was observed in both bulk material and foam. Despite the absence of methane production, Methanosaeta were detected within the microbial community. An F/M ratio of 0.5 g COD g−1 VS led to the best VFA production of 1769.4 mg L−1.CONCLUSIONOverall, inoculum thermal pre‐treatment, initial pH 9.0 and NP headspace acted as a selective pressure for halting methanogenesis and producing VFAs, valorizing cheese whey via batch acidogenic fermentation. © 2024 Society of Chemical Industry (SCI).
Journal of Chemical ... arrow_drop_down Journal of Chemical Technology & BiotechnologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jctb.7607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Chemical ... arrow_drop_down Journal of Chemical Technology & BiotechnologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jctb.7607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Spain, United States, SpainPublisher:Springer Science and Business Media LLC Funded by:NSERC, NSF | Unraveling regulatory net..., NSF | Regulatory Signaling Logi... +6 projectsNSERC ,NSF| Unraveling regulatory networks in biological nutrient removal (BNR) microbiomes ,NSF| Regulatory Signaling Logic In Self-Assembled Microbial Communities During Oscillating Environmental Conditions ,NSF| RII Track-2 FEC: Building Genome-to-Phenome Infrastructure for Regulating Methane in Deep and Extreme Environments (BuG ReMeDEE) ,SNSF| Systems microbiology of alginate polysaccharides biosynthesis from granular sludge biofilms to waste-based biorefining in mixed-culture microbial processes ,NSF| An evolutionary approach to enable reprogramming of non-ribosomal peptide enzymology ,NWO| Transmission of Antimicrobial Resistance Genes and Engineered DNA from Transgenic Biosystems in Nature ,NSF| Collaborative Research: SusChEM: Unlocking the fundamental mechanisms that underlie selectivity in oleochemical producing enzymes ,NSF| Dimensions: Collaborative Research: the role of microbial biodiversity in controlling nitrous oxide emissions from soilsAuthors: Katherine D. McMahon; Hector Garcia Martin; Lutgarde Raskin; Michelle A. O’Malley; +12 AuthorsKatherine D. McMahon; Hector Garcia Martin; Lutgarde Raskin; Michelle A. O’Malley; Michelle A. O’Malley; William R. Harcombe; Christopher E. Lawson; Ophelia S. Venturelli; Frank E. Löffler; Frank E. Löffler; Daniel R. Noguera; Daniel R. Noguera; Stephen R. Lindemann; David G. Weissbrodt; Roland Hatzenpichler; Brian F. Pfleger;Despite broad scientific interest in harnessing the power of Earth's microbiomes, knowledge gaps hinder their efficient use for addressing urgent societal and environmental challenges. We argue that structuring research and technology developments around a design-build-test-learn (DBTL) cycle will advance microbiome engineering and spur new discoveries of the basic scientific principles governing microbiome function. In this Review, we present key elements of an iterative DBTL cycle for microbiome engineering, focusing on generalizable approaches, including top-down and bottom-up design processes, synthetic and self-assembled construction methods, and emerging tools to analyse microbiome function. These approaches can be used to harness microbiomes for broad applications related to medicine, agriculture, energy and the environment. We also discuss key challenges and opportunities of each approach and synthesize them into best practice guidelines for engineering microbiomes. We anticipate that adoption of a DBTL framework will rapidly advance microbiome-based biotechnologies aimed at improving human and animal health, agriculture and enabling the bioeconomy.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/0d11f5zqData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTABCAM's Institutional Repository DataArticle . 2019License: CC BY NC SAData sources: BCAM's Institutional Repository DataNature Reviews MicrobiologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-019-0255-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 398 citations 398 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/0d11f5zqData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTABCAM's Institutional Repository DataArticle . 2019License: CC BY NC SAData sources: BCAM's Institutional Repository DataNature Reviews MicrobiologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-019-0255-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Spain, United States, SpainPublisher:Springer Science and Business Media LLC Funded by:NSERC, NSF | Unraveling regulatory net..., NSF | Regulatory Signaling Logi... +6 projectsNSERC ,NSF| Unraveling regulatory networks in biological nutrient removal (BNR) microbiomes ,NSF| Regulatory Signaling Logic In Self-Assembled Microbial Communities During Oscillating Environmental Conditions ,NSF| RII Track-2 FEC: Building Genome-to-Phenome Infrastructure for Regulating Methane in Deep and Extreme Environments (BuG ReMeDEE) ,SNSF| Systems microbiology of alginate polysaccharides biosynthesis from granular sludge biofilms to waste-based biorefining in mixed-culture microbial processes ,NSF| An evolutionary approach to enable reprogramming of non-ribosomal peptide enzymology ,NWO| Transmission of Antimicrobial Resistance Genes and Engineered DNA from Transgenic Biosystems in Nature ,NSF| Collaborative Research: SusChEM: Unlocking the fundamental mechanisms that underlie selectivity in oleochemical producing enzymes ,NSF| Dimensions: Collaborative Research: the role of microbial biodiversity in controlling nitrous oxide emissions from soilsAuthors: Katherine D. McMahon; Hector Garcia Martin; Lutgarde Raskin; Michelle A. O’Malley; +12 AuthorsKatherine D. McMahon; Hector Garcia Martin; Lutgarde Raskin; Michelle A. O’Malley; Michelle A. O’Malley; William R. Harcombe; Christopher E. Lawson; Ophelia S. Venturelli; Frank E. Löffler; Frank E. Löffler; Daniel R. Noguera; Daniel R. Noguera; Stephen R. Lindemann; David G. Weissbrodt; Roland Hatzenpichler; Brian F. Pfleger;Despite broad scientific interest in harnessing the power of Earth's microbiomes, knowledge gaps hinder their efficient use for addressing urgent societal and environmental challenges. We argue that structuring research and technology developments around a design-build-test-learn (DBTL) cycle will advance microbiome engineering and spur new discoveries of the basic scientific principles governing microbiome function. In this Review, we present key elements of an iterative DBTL cycle for microbiome engineering, focusing on generalizable approaches, including top-down and bottom-up design processes, synthetic and self-assembled construction methods, and emerging tools to analyse microbiome function. These approaches can be used to harness microbiomes for broad applications related to medicine, agriculture, energy and the environment. We also discuss key challenges and opportunities of each approach and synthesize them into best practice guidelines for engineering microbiomes. We anticipate that adoption of a DBTL framework will rapidly advance microbiome-based biotechnologies aimed at improving human and animal health, agriculture and enabling the bioeconomy.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/0d11f5zqData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTABCAM's Institutional Repository DataArticle . 2019License: CC BY NC SAData sources: BCAM's Institutional Repository DataNature Reviews MicrobiologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-019-0255-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 398 citations 398 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/0d11f5zqData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTABCAM's Institutional Repository DataArticle . 2019License: CC BY NC SAData sources: BCAM's Institutional Repository DataNature Reviews MicrobiologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-019-0255-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu