Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Samuel Starko; Christopher J. Neufeld; Lianna Gendall; Brian Timmer; +4 Authors

    AbstractMarine heatwaves threaten the persistence of kelp forests globally. However, the observed responses of kelp forests to these events have been highly variable on local scales. Here, we synthesize distribution data from an environmentally diverse region to examine spatial patterns of canopy kelp persistence through an unprecedented marine heatwave. We show that, although often overlooked, temperature variation occurring at fine spatial scales (i.e., a few kilometers or less) can be a critical driver of kelp forest persistence during these events. Specifically, though kelp forests nearly all persisted toward the cool outer coast, inshore areas were >3°C warmer at the surface and experienced extensive kelp loss. Although temperatures remained cool at depths below the thermocline, kelp persistence in these thermal refugia was strongly constrained by biotic interactions, specifically urchin populations that increased during the heatwave and drove transitions to urchin barrens in deeper rocky habitat. Urchins were, however, largely absent from mixed sand and cobble benthos, leading to an unexpected association between bottom substrate and kelp forest persistence at inshore sites with warm surface waters. Our findings demonstrate both that warm microclimates increase the risk of habitat loss during marine heatwaves and that biotic interactions modified by these events will modulate the capacity of cool microclimates to serve as thermal refugia.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Applicati...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Applications
    Article . 2022 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    48
    citations48
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Applicati...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Applications
      Article . 2022 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Samuel Starko; Mirjam van der Mheen; Albert Pessarrodona; Georgina V. Wood; +5 Authors

    AbstractMarine heatwaves (MHWs), increasing in duration and intensity because of climate change, are now a major threat to marine life and can have lasting effects on the structure and function of ecosystems. However, the responses of marine taxa and ecosystems to MHWs can be highly variable, making predicting and interpreting biological outcomes a challenge. Here, we review how biological responses to MHWs, from individuals to ecosystems, are mediated by fine‐scale spatial variability in the coastal marine environment (hereafter, local gradients). Viewing observed responses through a lens of ecological theory, we present a simple framework of three ‘resilience processes’ (RPs) by which local gradients can influence the responses of marine taxa to MHWs. Local gradients (1) influence the amount of stress directly experienced by individuals, (2) facilitate local adaptation and acclimatization of individuals and populations, and (3) shape community composition which then influences responses to MHWs. We then synthesize known examples of fine‐scale gradients that have affected responses of benthic foundation species to MHWs, including kelp forests, coral reefs, and seagrass meadows and link these varying responses to the RPs. We present a series of case studies from various marine ecosystems to illustrate the differential impacts of MHWs mediated by gradients in both temperature and other co‐occurring drivers. In many cases, these gradients had large effect sizes with several examples of local gradients causing a 10‐fold difference in impacts or more (e.g., survival, coverage). This review highlights the need for high‐resolution environmental data to accurately predict and manage the consequences of MHWs in the context of ongoing climate change. While current tools may capture some of these gradients already, we advocate for enhanced monitoring and finer scale integration of local environmental heterogeneity into climate models. This will be essential for developing effective conservation strategies and mitigating future marine biodiversity loss.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Change Biolog...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Global Change Biology
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Brage IMR
    Article . 2024
    Data sources: Brage IMR
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Change Biolog...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Global Change Biology
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Brage IMR
      Article . 2024
      Data sources: Brage IMR
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Samuel Starko; Christopher J. Neufeld; Lianna Gendall; Brian Timmer; +4 Authors

    AbstractMarine heatwaves threaten the persistence of kelp forests globally. However, the observed responses of kelp forests to these events have been highly variable on local scales. Here, we synthesize distribution data from an environmentally diverse region to examine spatial patterns of canopy kelp persistence through an unprecedented marine heatwave. We show that, although often overlooked, temperature variation occurring at fine spatial scales (i.e., a few kilometers or less) can be a critical driver of kelp forest persistence during these events. Specifically, though kelp forests nearly all persisted toward the cool outer coast, inshore areas were >3°C warmer at the surface and experienced extensive kelp loss. Although temperatures remained cool at depths below the thermocline, kelp persistence in these thermal refugia was strongly constrained by biotic interactions, specifically urchin populations that increased during the heatwave and drove transitions to urchin barrens in deeper rocky habitat. Urchins were, however, largely absent from mixed sand and cobble benthos, leading to an unexpected association between bottom substrate and kelp forest persistence at inshore sites with warm surface waters. Our findings demonstrate both that warm microclimates increase the risk of habitat loss during marine heatwaves and that biotic interactions modified by these events will modulate the capacity of cool microclimates to serve as thermal refugia.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Applicati...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Applications
    Article . 2022 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    48
    citations48
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Applicati...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Applications
      Article . 2022 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Samuel Starko; Mirjam van der Mheen; Albert Pessarrodona; Georgina V. Wood; +5 Authors

    AbstractMarine heatwaves (MHWs), increasing in duration and intensity because of climate change, are now a major threat to marine life and can have lasting effects on the structure and function of ecosystems. However, the responses of marine taxa and ecosystems to MHWs can be highly variable, making predicting and interpreting biological outcomes a challenge. Here, we review how biological responses to MHWs, from individuals to ecosystems, are mediated by fine‐scale spatial variability in the coastal marine environment (hereafter, local gradients). Viewing observed responses through a lens of ecological theory, we present a simple framework of three ‘resilience processes’ (RPs) by which local gradients can influence the responses of marine taxa to MHWs. Local gradients (1) influence the amount of stress directly experienced by individuals, (2) facilitate local adaptation and acclimatization of individuals and populations, and (3) shape community composition which then influences responses to MHWs. We then synthesize known examples of fine‐scale gradients that have affected responses of benthic foundation species to MHWs, including kelp forests, coral reefs, and seagrass meadows and link these varying responses to the RPs. We present a series of case studies from various marine ecosystems to illustrate the differential impacts of MHWs mediated by gradients in both temperature and other co‐occurring drivers. In many cases, these gradients had large effect sizes with several examples of local gradients causing a 10‐fold difference in impacts or more (e.g., survival, coverage). This review highlights the need for high‐resolution environmental data to accurately predict and manage the consequences of MHWs in the context of ongoing climate change. While current tools may capture some of these gradients already, we advocate for enhanced monitoring and finer scale integration of local environmental heterogeneity into climate models. This will be essential for developing effective conservation strategies and mitigating future marine biodiversity loss.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Change Biolog...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Global Change Biology
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Brage IMR
    Article . 2024
    Data sources: Brage IMR
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Change Biolog...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Global Change Biology
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Brage IMR
      Article . 2024
      Data sources: Brage IMR
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph