- home
- Advanced Search
- Energy Research
- Open Access
- Energy Research
- Open Access
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Elżbieta Hałaj; Leszek Pająk; Bartosz Papiernik;doi: 10.3390/en13061341
Model simulation allows to present the time-varying temperature distribution of the ground source for heat pumps. A system of 25 double U-shape borehole heat exchangers (BHEs) in long-term operation and three scenarios were created. In these scenarios, the difference between balanced and non-balanced energy load was considered as well as the influence of the hydrogeological factors on the temperature of the ground source. The aim of the study was to compare different thermal regimes of BHEs operation and examine the influence of small-scale and short-time thermal energy storage on ground source thermal balance. To present the performance of the system according to geological and hydrogeological factors, a Feflow® software (MIKE Powered by DHI Software) was used. The temperature for the scenarios was visualized after 10 and 30 years of the system’s operation. In this paper, a case is presented in which waste thermal energy from space cooling applications during summer months was used to upgrade thermal performance of the ground (geothermal) source of a heat pump. The study shows differences in the temperature in the ground around different Borehole Heat Exchangers. The cold plume from the not-balanced energy scenario is the most developed and might influence the future installations in the vicinity. Moreover, seasonal storage can partially overcome the negative influence of the travel of a cold plume. The most exposed to freezing were BHEs located in the core of the cold plumes. Moreover, the influence of the groundwater flow on the thermal recovery of the several BHEs is visible. The proper energy load of the geothermal source heat pump installation is crucial and it can benefit from small-scale storage. After 30 years of operation, the minimum average temperature at 50 m depth in the system with waste heat from space cooling was 2.1 °C higher than in the system without storage and 1.6 °C higher than in the layered model in which storage was not applied.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Barbara Tomaszewska; Grażyna Hołojuch; Leszek Pająk;Desalination and Wat... arrow_drop_down Desalination and Water TreatmentArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5004/dwt.2017.0657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert Desalination and Wat... arrow_drop_down Desalination and Water TreatmentArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5004/dwt.2017.0657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:IOP Publishing Authors: Leszek Pająk; Anna Wachowicz-Pyzik; Anna Sowiżdżał;The numerical modeling enables us to reduce the risk related to the selection of best localization of wells. Moreover, at the stage of production, modeling is a suitable tool for optimization of well operational parameters, which guarantees the long life of doublets. The thorough selection of software together with relevant methodology applied to generation of numerical models significantly improve the quality of obtained results. In the following paper, we discuss the impact of density of calculation grid on the results of geothermal doublet simulation with the TOUGH2 code, which applies the finite-difference method. The study area is located between the Szczecin Trough and the Fore-sudetic Monocline, where the Choszczno IG-1 well has been completed. Our research was divided into the two stages. At the first stage, we examined the changes of density of polygon calculation grids used in computations of operational parameters of geothermal doublets. At the second stage, we analyzed the influence of distance between the production and the injection wells on variability in time of operational parameters. The results demonstrated that in both studied cases, the largest differences occurred in pressures measured in production and injection wells whereas the differences in temperatures were less pronounced.
Journal of Physics C... arrow_drop_down Journal of Physics Conference SeriesArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/745/3/032021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Physics C... arrow_drop_down Journal of Physics Conference SeriesArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/745/3/032021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Magdalena Strojny; Paweł Gładysz; Trond Andresen; Leszek Pająk; Magdalena Starczewska; Anna Sowiżdżał;doi: 10.3390/en17092077
Low-carbon electricity and heat production is essential for keeping the decarbonization targets and climate mitigation goals. Thus, an accurate understanding of the potential environmental impacts constitutes a key aspect not only for the reduction in greenhouse gas emissions but also for other environmental categories. Life cycle assessment allows us to conduct an overall evaluation of a given process or system through its whole lifetime across various environmental indicators. This study focused on construction, operation and maintenance, and end-of-life phases, which were analyzed based on the ReCiPe 2016 method. Within this work, authors assessed the environmental performance of one of the renewable energy sources—Enhanced Geothermal Systems, which utilize supercritical carbon dioxide as a working fluid to produce electricity and heat. Heat for the process is extracted from hot, dry rocks, typically located at depths of approximately 4–5 km, and requires appropriate stimulation to enable fluid flow. Consequently, drilling and site preparation entail significant energy and material inputs. This stage, based on conducted calculations, exhibits the highest global warming potential, with values between 5.2 and 30.1 kgCO2eq/MWhel, corresponding to approximately 65%, 86%, and 94% in terms of overall impacts for ecosystems, human health, and resources categories, respectively. Moreover, the study authors compared the EGS impacts for the Polish and Norwegian conditions. Obtained results indicated that due to much higher electricity output from the Norwegian plant, which is sited offshore, the environmental influence remains the lowest, at a level of 11.9 kgCO2eq/MWhel. Polish cases range between 38.7 and 54.1 kgCO2eq/MWhel of global warming potential in terms of electricity production. Regarding power generation only, the impacts in the case of the Norwegian facility are two to five times lower than for the installation in the Polish conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Tomasz Jeleński; Marta Dendys; Barbara Tomaszewska; Leszek Pająk;doi: 10.3390/en13071754
Health impacts and a decrease in the quality of life caused by air pollution is a major problem worldwide. Krakow is one of the most affected cities in the EU by air pollution mostly caused by burning solid fuels in households’ furnaces. It is considered that the most effective remedies would be adequate spatial planning solutions and application of low-emission sources including renewable energy sources (RES). This article draws from the analysis of the use of RES as a means for reducing harmful emissions in Krakow Functional Area (KrOF). The inventories of renewable energy sources and systems were compiled by the authors as a part of the EU project “Smart Edge—Sustainable Metropolitan Areas and the Role of The Edge City”. Using the data from the inventories, a SWOT analysis has been carried out to identify factors that determine the smart management of the RES potential, particularly the decisions of households on the transition towards RES. The results of the analysis have shown that many actions have been taken at the national, regional, and local levels but the greatest influence bear the solutions initiated and implemented at the communal level. The conclusion is that legislative regulations should be combined with locally tailor-made instruments. The proposed method of analysis can be applied in other metropolitan areas as a diagnostic procedure supporting action planning to solve air-quality problems caused by distributed emission sources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Leszek Pająk; Leszek Lankof; Barbara Tomaszewska; Paweł Wojnarowski; Damian Janiga;doi: 10.3390/en14040803
This article presents an estimation of the temperature decrease in the vicinity of a salt cavern due to its leaching. The one-dimensional radially symmetry models of a salt cavern were considered and described. The initial temperature of rock salt massif was assumed as 50 ∘C and temperature of leaching water varied seasonally from 6 ∘C to 20 ∘C. A significant influence of the season of the leaching process, beginning on the final temperature distribution was found. The model takes into account: convection coefficient changes depending on temperature of brine and rock formation and heat effects caused by salt dissolution. Numerical results are compared with measurements data on the field of cavern volume increasing with time as the function of flow of leaching water and its temperature. The accuracy of the cavern volume increasing versus time was assumed as good—both quantitative and qualitative.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Michał Kaczmarczyk; Barbara Tomaszewska; Leszek Pająk;doi: 10.3390/en13061335
The article presents an assessment of the potential for using low enthalpy geothermal resources for electricity generation on the basis of the Małopolskie Voivodeship (southern Poland). Identification the locations providing the best prospects with the highest efficiency and possible gross power output. Thermodynamic calculations of power plants were based on data from several geothermal wells: the Bańska PGP-1, Bańska IG-1, Bańska PGP-3 and Chochołów PIG-1 which are working wells located in one of the best geothermal reservoirs in Poland. As the temperature of geothermal waters from the wells does not exceed 86 °C, considerations include the use of binary technologies—the Organic Rankine Cycle (ORC) and Kalina Cycle. The potential gross capacity calculated for existing geothermal wells will not exceed 900 kW for ORC and 1.6 MW for Kalina Cycle. In the case of gross electricity, the total production will not exceed 3.3 GWh/year using the ORC, and will not exceed 6.3 GWh/year for the Kalina Cycle.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Leszek Pająk; Marcin Daniel Lemański; Bartosz Kraszewski; Stanisław Głuch; Anna Wachowicz-Pyzik; Janusz Badur; Paweł Ziółkowski; Sebastian Bykuć; Anna Sowiżdżał; Rafał Hyrzyński;In recent years, pressure has been growing to increase the share of renewable energy sources in electricity generation, which may offer opportunities for the development of geothermal energy in regions that have been so far considered unprofitable in this respect. One such country currently undergoing an energy transition is Poland in which low-temperature geothermal resources are currently used for district heating and recreation purposes. Nevertheless, research on the possibilities of using geothermal energy for electricity production is ongoing. The objective of this paper was to perform a comprehensive analysis of a binary power plant construction in relation to low-temperature petro-geothermal resources. The potential binary power plant is located in the area characterized by temperature of 120 ◦C at depths of 5000 m. About half of Poland’s area, especially the regions of western and central Poland, has these characteristics. It was assumed that brine at volume flow rate of 400 m3/h is a heat source for the Organic Rankine Cycle with isobutane as a working medium. The thermal efficiency based on the First Law of Thermodynamics and the power output were estimated at 10.5% and 1.79 MWe, respectively. In addition, the thermal efficiency based on the Second Law of Thermodynamics was calculated at 29.0%. For the calculated cycle parameters, a preliminary design of a two-stage axial turbine was constructed. All results were compared to the other binary power plants and they confirm that establishing the binary power plant in Poland would be thermodynamically justified. The main novelty of the present work is the combination of three issues, namely the selection of the low- temperature heat source, the design and analysis of the cycle together with a turbine adapted to these conditions.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Leszek Pająk; Barbara Tomaszewska; Wiesław Bujakowski; Bogusław Bielec; Marta Dendys;doi: 10.3390/en13061302
The paper presents a review of the geological and hydrogeological data of the Lower Cretaceous aquifer in the Polish Lowlands and discusses the possibilities for the utilisation of geothermal water resources in existing and new district heating systems. Based on experience related to the use of thermal waters in existing geothermal systems, and using data from the literature, assessments have been made of the energy and environmental effects of the application of low-enthalpy geothermal resources from the Lower Cretaceous aquifer as a source of heat for urban district heating systems. The authors concluded that the implementation of such solutions could result in the production of approximately 4 PJ of geothermal energy annually. To date, these resources have only been developed in three locations—Mszczonów, Uniejów and Poddębice—with the total amount of energy generated annually reaching 100 TJ/year. Similar district heating networks in 120 nearby localities have been also identified. Here, specified geological and hydrogeological conditions enable the extraction of heat from the investigated Lower Cretaceous aquifer, with the aim of using this for heating purposes. To achieve this goal, multiple measures are required, including the following: raising public awareness through appropriate education programmes aimed at the youngest school children; systemic, efficient energy management measures at the central, regional and local levels, and providing financial support and ensuring regulations and laws aimed at improving the development of geothermal resources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Leszek Pająk; Anna Sowiżdżał; Paweł Gładysz; Barbara Tomaszewska; Maciej Miecznik; Trond Andresen; Bjørn S. Frengstad; Anna Chmielowska;doi: 10.3390/en14227683
The paper describes application of the cross-impact method in the process of selecting locations and technologies used in a geothermal system based on energy accumulated in a dry rock formation, where CO2 is used as the working medium. The survey is based on the opinion of a group of 20 experts representing different fields of earth and technical sciences. They represent Norway and Poland, where the location of such a system is considered. Based on experts’ experience and opinions, all factors that seem to be significant were classified into the following groups: targets, key factors, results, determiners, motor and brakes, regulating factors, external factors, auxiliary factors, and autonomous factors. Direct influences between variables were indicated. Due to major differences in geological conditions in Poland and Norway, the factor of on- or offshore technology was pointed out as the primary determiner. Among key factors, the system operation’s long-term safety and level of technological readiness were indicated. As a target factor, an interest of local authority was pointed out. Among the variables that are important when selecting locations for this type of system, nine are essential: (1) Formal constraints related to local nature protection areas—this variable is essential in the case of an onshore system; (2) Availability of CO2 sources; (3) Level of geological recognition; (4) The distance of the CO2-EGS from a thermal energy user and electricity grid; (5) Existing wells and other infrastructure; (6) Depth of the EGS system; (7) Water depth if offshore, this variable is only important when offshore systems are involved; (8) Physical parameters of reservoir rocks; (9) Reservoir temperature.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Elżbieta Hałaj; Leszek Pająk; Bartosz Papiernik;doi: 10.3390/en13061341
Model simulation allows to present the time-varying temperature distribution of the ground source for heat pumps. A system of 25 double U-shape borehole heat exchangers (BHEs) in long-term operation and three scenarios were created. In these scenarios, the difference between balanced and non-balanced energy load was considered as well as the influence of the hydrogeological factors on the temperature of the ground source. The aim of the study was to compare different thermal regimes of BHEs operation and examine the influence of small-scale and short-time thermal energy storage on ground source thermal balance. To present the performance of the system according to geological and hydrogeological factors, a Feflow® software (MIKE Powered by DHI Software) was used. The temperature for the scenarios was visualized after 10 and 30 years of the system’s operation. In this paper, a case is presented in which waste thermal energy from space cooling applications during summer months was used to upgrade thermal performance of the ground (geothermal) source of a heat pump. The study shows differences in the temperature in the ground around different Borehole Heat Exchangers. The cold plume from the not-balanced energy scenario is the most developed and might influence the future installations in the vicinity. Moreover, seasonal storage can partially overcome the negative influence of the travel of a cold plume. The most exposed to freezing were BHEs located in the core of the cold plumes. Moreover, the influence of the groundwater flow on the thermal recovery of the several BHEs is visible. The proper energy load of the geothermal source heat pump installation is crucial and it can benefit from small-scale storage. After 30 years of operation, the minimum average temperature at 50 m depth in the system with waste heat from space cooling was 2.1 °C higher than in the system without storage and 1.6 °C higher than in the layered model in which storage was not applied.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Barbara Tomaszewska; Grażyna Hołojuch; Leszek Pająk;Desalination and Wat... arrow_drop_down Desalination and Water TreatmentArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5004/dwt.2017.0657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert Desalination and Wat... arrow_drop_down Desalination and Water TreatmentArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5004/dwt.2017.0657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:IOP Publishing Authors: Leszek Pająk; Anna Wachowicz-Pyzik; Anna Sowiżdżał;The numerical modeling enables us to reduce the risk related to the selection of best localization of wells. Moreover, at the stage of production, modeling is a suitable tool for optimization of well operational parameters, which guarantees the long life of doublets. The thorough selection of software together with relevant methodology applied to generation of numerical models significantly improve the quality of obtained results. In the following paper, we discuss the impact of density of calculation grid on the results of geothermal doublet simulation with the TOUGH2 code, which applies the finite-difference method. The study area is located between the Szczecin Trough and the Fore-sudetic Monocline, where the Choszczno IG-1 well has been completed. Our research was divided into the two stages. At the first stage, we examined the changes of density of polygon calculation grids used in computations of operational parameters of geothermal doublets. At the second stage, we analyzed the influence of distance between the production and the injection wells on variability in time of operational parameters. The results demonstrated that in both studied cases, the largest differences occurred in pressures measured in production and injection wells whereas the differences in temperatures were less pronounced.
Journal of Physics C... arrow_drop_down Journal of Physics Conference SeriesArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/745/3/032021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Physics C... arrow_drop_down Journal of Physics Conference SeriesArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/745/3/032021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Magdalena Strojny; Paweł Gładysz; Trond Andresen; Leszek Pająk; Magdalena Starczewska; Anna Sowiżdżał;doi: 10.3390/en17092077
Low-carbon electricity and heat production is essential for keeping the decarbonization targets and climate mitigation goals. Thus, an accurate understanding of the potential environmental impacts constitutes a key aspect not only for the reduction in greenhouse gas emissions but also for other environmental categories. Life cycle assessment allows us to conduct an overall evaluation of a given process or system through its whole lifetime across various environmental indicators. This study focused on construction, operation and maintenance, and end-of-life phases, which were analyzed based on the ReCiPe 2016 method. Within this work, authors assessed the environmental performance of one of the renewable energy sources—Enhanced Geothermal Systems, which utilize supercritical carbon dioxide as a working fluid to produce electricity and heat. Heat for the process is extracted from hot, dry rocks, typically located at depths of approximately 4–5 km, and requires appropriate stimulation to enable fluid flow. Consequently, drilling and site preparation entail significant energy and material inputs. This stage, based on conducted calculations, exhibits the highest global warming potential, with values between 5.2 and 30.1 kgCO2eq/MWhel, corresponding to approximately 65%, 86%, and 94% in terms of overall impacts for ecosystems, human health, and resources categories, respectively. Moreover, the study authors compared the EGS impacts for the Polish and Norwegian conditions. Obtained results indicated that due to much higher electricity output from the Norwegian plant, which is sited offshore, the environmental influence remains the lowest, at a level of 11.9 kgCO2eq/MWhel. Polish cases range between 38.7 and 54.1 kgCO2eq/MWhel of global warming potential in terms of electricity production. Regarding power generation only, the impacts in the case of the Norwegian facility are two to five times lower than for the installation in the Polish conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Tomasz Jeleński; Marta Dendys; Barbara Tomaszewska; Leszek Pająk;doi: 10.3390/en13071754
Health impacts and a decrease in the quality of life caused by air pollution is a major problem worldwide. Krakow is one of the most affected cities in the EU by air pollution mostly caused by burning solid fuels in households’ furnaces. It is considered that the most effective remedies would be adequate spatial planning solutions and application of low-emission sources including renewable energy sources (RES). This article draws from the analysis of the use of RES as a means for reducing harmful emissions in Krakow Functional Area (KrOF). The inventories of renewable energy sources and systems were compiled by the authors as a part of the EU project “Smart Edge—Sustainable Metropolitan Areas and the Role of The Edge City”. Using the data from the inventories, a SWOT analysis has been carried out to identify factors that determine the smart management of the RES potential, particularly the decisions of households on the transition towards RES. The results of the analysis have shown that many actions have been taken at the national, regional, and local levels but the greatest influence bear the solutions initiated and implemented at the communal level. The conclusion is that legislative regulations should be combined with locally tailor-made instruments. The proposed method of analysis can be applied in other metropolitan areas as a diagnostic procedure supporting action planning to solve air-quality problems caused by distributed emission sources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Leszek Pająk; Leszek Lankof; Barbara Tomaszewska; Paweł Wojnarowski; Damian Janiga;doi: 10.3390/en14040803
This article presents an estimation of the temperature decrease in the vicinity of a salt cavern due to its leaching. The one-dimensional radially symmetry models of a salt cavern were considered and described. The initial temperature of rock salt massif was assumed as 50 ∘C and temperature of leaching water varied seasonally from 6 ∘C to 20 ∘C. A significant influence of the season of the leaching process, beginning on the final temperature distribution was found. The model takes into account: convection coefficient changes depending on temperature of brine and rock formation and heat effects caused by salt dissolution. Numerical results are compared with measurements data on the field of cavern volume increasing with time as the function of flow of leaching water and its temperature. The accuracy of the cavern volume increasing versus time was assumed as good—both quantitative and qualitative.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Michał Kaczmarczyk; Barbara Tomaszewska; Leszek Pająk;doi: 10.3390/en13061335
The article presents an assessment of the potential for using low enthalpy geothermal resources for electricity generation on the basis of the Małopolskie Voivodeship (southern Poland). Identification the locations providing the best prospects with the highest efficiency and possible gross power output. Thermodynamic calculations of power plants were based on data from several geothermal wells: the Bańska PGP-1, Bańska IG-1, Bańska PGP-3 and Chochołów PIG-1 which are working wells located in one of the best geothermal reservoirs in Poland. As the temperature of geothermal waters from the wells does not exceed 86 °C, considerations include the use of binary technologies—the Organic Rankine Cycle (ORC) and Kalina Cycle. The potential gross capacity calculated for existing geothermal wells will not exceed 900 kW for ORC and 1.6 MW for Kalina Cycle. In the case of gross electricity, the total production will not exceed 3.3 GWh/year using the ORC, and will not exceed 6.3 GWh/year for the Kalina Cycle.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Leszek Pająk; Marcin Daniel Lemański; Bartosz Kraszewski; Stanisław Głuch; Anna Wachowicz-Pyzik; Janusz Badur; Paweł Ziółkowski; Sebastian Bykuć; Anna Sowiżdżał; Rafał Hyrzyński;In recent years, pressure has been growing to increase the share of renewable energy sources in electricity generation, which may offer opportunities for the development of geothermal energy in regions that have been so far considered unprofitable in this respect. One such country currently undergoing an energy transition is Poland in which low-temperature geothermal resources are currently used for district heating and recreation purposes. Nevertheless, research on the possibilities of using geothermal energy for electricity production is ongoing. The objective of this paper was to perform a comprehensive analysis of a binary power plant construction in relation to low-temperature petro-geothermal resources. The potential binary power plant is located in the area characterized by temperature of 120 ◦C at depths of 5000 m. About half of Poland’s area, especially the regions of western and central Poland, has these characteristics. It was assumed that brine at volume flow rate of 400 m3/h is a heat source for the Organic Rankine Cycle with isobutane as a working medium. The thermal efficiency based on the First Law of Thermodynamics and the power output were estimated at 10.5% and 1.79 MWe, respectively. In addition, the thermal efficiency based on the Second Law of Thermodynamics was calculated at 29.0%. For the calculated cycle parameters, a preliminary design of a two-stage axial turbine was constructed. All results were compared to the other binary power plants and they confirm that establishing the binary power plant in Poland would be thermodynamically justified. The main novelty of the present work is the combination of three issues, namely the selection of the low- temperature heat source, the design and analysis of the cycle together with a turbine adapted to these conditions.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Leszek Pająk; Barbara Tomaszewska; Wiesław Bujakowski; Bogusław Bielec; Marta Dendys;doi: 10.3390/en13061302
The paper presents a review of the geological and hydrogeological data of the Lower Cretaceous aquifer in the Polish Lowlands and discusses the possibilities for the utilisation of geothermal water resources in existing and new district heating systems. Based on experience related to the use of thermal waters in existing geothermal systems, and using data from the literature, assessments have been made of the energy and environmental effects of the application of low-enthalpy geothermal resources from the Lower Cretaceous aquifer as a source of heat for urban district heating systems. The authors concluded that the implementation of such solutions could result in the production of approximately 4 PJ of geothermal energy annually. To date, these resources have only been developed in three locations—Mszczonów, Uniejów and Poddębice—with the total amount of energy generated annually reaching 100 TJ/year. Similar district heating networks in 120 nearby localities have been also identified. Here, specified geological and hydrogeological conditions enable the extraction of heat from the investigated Lower Cretaceous aquifer, with the aim of using this for heating purposes. To achieve this goal, multiple measures are required, including the following: raising public awareness through appropriate education programmes aimed at the youngest school children; systemic, efficient energy management measures at the central, regional and local levels, and providing financial support and ensuring regulations and laws aimed at improving the development of geothermal resources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Leszek Pająk; Anna Sowiżdżał; Paweł Gładysz; Barbara Tomaszewska; Maciej Miecznik; Trond Andresen; Bjørn S. Frengstad; Anna Chmielowska;doi: 10.3390/en14227683
The paper describes application of the cross-impact method in the process of selecting locations and technologies used in a geothermal system based on energy accumulated in a dry rock formation, where CO2 is used as the working medium. The survey is based on the opinion of a group of 20 experts representing different fields of earth and technical sciences. They represent Norway and Poland, where the location of such a system is considered. Based on experts’ experience and opinions, all factors that seem to be significant were classified into the following groups: targets, key factors, results, determiners, motor and brakes, regulating factors, external factors, auxiliary factors, and autonomous factors. Direct influences between variables were indicated. Due to major differences in geological conditions in Poland and Norway, the factor of on- or offshore technology was pointed out as the primary determiner. Among key factors, the system operation’s long-term safety and level of technological readiness were indicated. As a target factor, an interest of local authority was pointed out. Among the variables that are important when selecting locations for this type of system, nine are essential: (1) Formal constraints related to local nature protection areas—this variable is essential in the case of an onshore system; (2) Availability of CO2 sources; (3) Level of geological recognition; (4) The distance of the CO2-EGS from a thermal energy user and electricity grid; (5) Existing wells and other infrastructure; (6) Depth of the EGS system; (7) Water depth if offshore, this variable is only important when offshore systems are involved; (8) Physical parameters of reservoir rocks; (9) Reservoir temperature.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu