- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Denmark, AustraliaPublisher:Springer Science and Business Media LLC Price, Gilbert J.; Louys, Julien; Faith, J. Tyler; Lorenzen, Eline; Westaway, Michael C.;Too many meta-analyses of extinctions of giant kangaroos or huge sloths use data that are poor or poorly understood, warn Gilbert J. Price and colleagues. Too many meta-analyses of extinctions of giant kangaroos or huge sloths usedata that are poor or poorly understood, warn Gilbert J. Price and colleagues.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018Full-Text: http://hdl.handle.net/10072/381350Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-05330-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018Full-Text: http://hdl.handle.net/10072/381350Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-05330-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, Norway, Sweden, GermanyPublisher:Elsevier BV Publicly fundedFunded by:SNSF | Genome-wide consequences ..., SNSF | Using pre-fragmentation p..., EC | Extinction GenomicsSNSF| Genome-wide consequences of population declines in extinct and extant species ,SNSF| Using pre-fragmentation palaeogenomes to assess the likelihood of genetic rescue in endangered species ,EC| Extinction GenomicsAuthors: Adrian M. Lister; Mikkel-Holger S. Sinding; Mikkel-Holger S. Sinding; Peter D. Heintzman; +33 AuthorsAdrian M. Lister; Mikkel-Holger S. Sinding; Mikkel-Holger S. Sinding; Peter D. Heintzman; Love Dalén; Love Dalén; Sergey Vartanyan; Yvonne L. Chan; Yvonne L. Chan; Hervé Bocherens; Olga Potapova; Olga Potapova; Marcin Kierczak; Stefan Prost; Joshua D. Kapp; David Díez-del-Molino; Johannes van der Plicht; Anders Götherström; Eske Willerslev; Irina V. Kirillova; Senthilvel K. S. S. Nathan; Fátima Sánchez-Barreiro; Sergey Fedorov; Guojie Zhang; M. Thomas P. Gilbert; M. Thomas P. Gilbert; Oliver A. Ryder; F. K. Shidlovskiy; Edana Lord; Edana Lord; David W. G. Stanton; Eline D. Lorenzen; Nicolas Dussex; Nicolas Dussex; Benoit Goossens; A. V. Protopopov; Beth Shapiro;Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species' extinction. Analysis of the nuclear genome from a ∼18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bølling-Allerød interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species.
CORE arrow_drop_down Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research ArchiveUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2020.07.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research ArchiveUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2020.07.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Denmark, United Kingdom, United Kingdom, United States, Spain, Australia, AustraliaPublisher:Springer Science and Business Media LLC Persaram Batra; Eline D. Lorenzen; Kelly E. Graf; Ludovic Orlando; Alan M. Haywood; Morten Meldgaard; Mikhail V. Sablin; David A. Byers; Jonas Binladen; Thomas W. Stafford; David Nogués-Bravo; Robert S. Sommer; H. Gregory McDonald; Jesper Stenderup; Dennis L. Jenkins; S. P. Davydov; Marc A. Suchard; Andrew Ugan; Andrew Ugan; Andrew Ugan; Taras Sipko; Ted Goebel; Alexei Tikhonov; Alan Cooper; Katharine A. Marske; G. G. Boeskorov; Michael K. Borregaard; Robert K. Wayne; Kasper Munch; Larry D. Martin; Eric Scott; Dick Mol; Grant D. Zazula; M. Thomas P. Gilbert; Duane G. Froese; Jaco Weinstock; Paul J. Valdes; Joy S. Singarayer; James Haile; Pavel A. Kosintsev; Eske Willerslev; Michael Hofreiter; Kim Aaris-Sørensen; Tatyana Kuznetsova; James A. Burns; Xulong Lai; Andrei Sher; Rane Willerslev; Simon Y. W. Ho; Carsten Rahbek; Klaus-Peter Koepfli; Beth Shapiro; Rasmus Nielsen; Rasmus Nielsen; Elisabeth Stephan; Jennifer A. Leonard; Jennifer A. Leonard; Paula F. Campos; Morten Rasmussen;Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
KU ScholarWorks arrow_drop_down KU ScholarWorksArticle . 2014Full-Text: http://hdl.handle.net/1808/14688Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature10574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 568 citations 568 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 56visibility views 56 download downloads 93 Powered bymore_vert KU ScholarWorks arrow_drop_down KU ScholarWorksArticle . 2014Full-Text: http://hdl.handle.net/1808/14688Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature10574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Funded by:EC | SEA-Quester, EC | POLARCEC| SEA-Quester ,EC| POLARCSchreiber, Lennart; Ribeiro, Sofia; Jackson, Rebecca; Kvorning, Anna Bang; Nota, Kevin; O'Regan, Matt; Pearce, Christof; Seersholm, Frederik Valeur; Seidenkrantz, Marit-Solveig; Zimmermann, Heike H.; Lorenzen, Eline D.;Abstract Arctic marine ecosystems have undergone notable reconfigurations in response to Holocene environmental shifts. Yet our understanding of how marine mammal occurrence was impacted remains limited, due to their relative scarcity in the fossil record. We reconstructed the occurrence of marine mammals across the past 12,000 years through genetic detections based on sedimentary ancient DNA from four marine sediment cores collected around Northern Greenland, and integrated the findings with local and regional environmental proxy records. Our findings indicate a close association between the establishment of marine mammals at densities detectable in marine sediments and the deglaciation of marine environments at the onset of the Holocene. Further, we identified air temperature as a significant driver of community change across time. Several marine mammals were detected in the sediments earlier than in the fossil record, for some species by several thousands of years. During the Early-to-Mid Holocene, a period of past warmer climate, we recorded northward distribution shifts of temperate and low-arctic marine mammal species. Our findings provide unique, long-term baseline data on the occurrence of marine mammals around Northern Greenland, providing novel insights into past community dynamics and the effects of Holocene climatic shifts on the region’s marine ecosystems.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-5291490/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-5291490/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Australia, Australia, DenmarkPublisher:Wiley Funded by:ARC | Discovery Projects - Gran..., ARC | Future Fellowships - Gran..., ARC | ARC Future Fellowships - ...ARC| Discovery Projects - Grant ID: DP180102392 ,ARC| Future Fellowships - Grant ID: FT140101192 ,ARC| ARC Future Fellowships - Grant ID: FT200100870Stuart C. Brown; Camille Mellin; Jorge García Molinos; Eline D. Lorenzen; Damien A. Fordham;AbstractThe vulnerability of marine biodiversity to accelerated rates of climatic change is poorly understood. By developing a new method for identifying extreme oceanic warming events during Earth's most recent deglaciation, and comparing these to 21st century projections, we show that future rates of ocean warming will disproportionately affect the most speciose marine communities, potentially threatening biodiversity in more than 70% of current‐day global hotspots of marine species richness. The persistence of these richest areas of marine biodiversity will require many species to move well beyond the biogeographic realm where they are endemic, at rates of redistribution not previously seen. Our approach for quantifying exposure of biodiversity to past and future rates of oceanic warming provides new context and scalable information for deriving and strengthening conservation actions to safeguard marine biodiversity under climate change.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 DenmarkPublisher:Authorea, Inc. Funded by:RCN | "Arctic marine mammals in..., EC | TALENTRCN| "Arctic marine mammals in a time of climate change:a Kongsfjorden Case Study(""ARK"" – ARktiske Klima forandringer Konsekvenser)" ,EC| TALENTAuthors: Morgan L. McCarthy; Alba Refoyo Martínez; Steven H. Ferguson; Aqqalu Rosing‐Asvid; +11 AuthorsMorgan L. McCarthy; Alba Refoyo Martínez; Steven H. Ferguson; Aqqalu Rosing‐Asvid; Rune Dietz; Binia De Cahsan; Lennart Schreiber; Eline D. Lorenzen; Rikke Guldborg Hansen; Raphaela Stimmelmayr; Anna Bryan; Lori Quakenbush; Christian Lydersen; Kit M. Kovacs; Morten Tange Olsen;pmid: 39835612
ABSTRACTThe Arctic environment plays a critical role in the global climate system and marine biodiversity. The region's ice‐covered expanses provide essential breeding and feeding grounds for a diverse assemblage of marine species, who have adapted to thrive in these harsh conditions and consequently are under threat from global warming. The bearded seal (Erignathus barbatus), including two subspecies (E. barbatus nauticus—Pacific and E. barbatus barbatus—Atlantic), is an ice‐obligate Arctic species using sea ice for many aspects of its life history, rendering it particularly vulnerable to sea ice loss. It is one of the least studied and hence enigmatic of the Arctic marine mammals, with little knowledge regarding genetic structure, diversity, adaptations, and demographic history, consequently hampering management and conservation efforts. Here, we sequenced 70 whole nuclear genomes from across most of the species' circumpolar range, finding significant genetic structure between the Pacific and the Atlantic subspecies, which diverged during the Penultimate Glacial Period (~200 KYA). Remarkably, we found fine‐scale genetic structure within both subspecies, with at least two distinct populations in the Pacific and three in the Atlantic. We hypothesise sea‐ice dynamics and bathymetry had a prominent role in shaping bearded seal genetic structure and diversity. Our analyses of highly differentiated genomic regions can be used to complement the health, physiological, and behavioural research needed to conserve this species. In addition, we provide recommendations for management units that can be used to more specifically assess climatic and anthropogenic impacts on bearded seal populations.
Molecular Ecology arrow_drop_down Copenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.172114675.57316404/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Molecular Ecology arrow_drop_down Copenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.172114675.57316404/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Denmark, FinlandPublisher:Cold Spring Harbor Laboratory Funded by:NSERCNSERCMichael V. Westbury; Stuart C. Brown; Julie Lorenzen; Stuart O’Neill; Michael B. Scott; Julia McCuaig; Christina Cheung; Edward Armstrong; Paul J. Valdes; José Alfredo Samaniego Castruita; Andrea A. Cabrera; Stine Keibel Blom; Rune Dietz; Christian Sonne; Marie Louis; Anders Galatius; Damien A. Fordham; Sofia Ribeiro; Paul Szpak; Eline D. Lorenzen;AbstractThe Arctic is among the most climatically sensitive environments on Earth, and the disappearance of multiyear sea-ice in the Arctic Ocean is predicted within decades. As apex predators, polar bears are sentinel species for addressing the impact of environmental variability on Arctic marine ecosystems. By integrating genomics, isotopic analysis, morphometrics, and ecological modelling, we investigate how Holocene environmental changes affected the evolutionary ecology of polar bears around Greenland. We show that throughout the last ∼11,000 years, Greenlandic polar bears have been heavily influenced by changes in sea-surface temperature (SST) and sea-ice cover. Most notable are major reductions in effective population size at the beginning of the Holocene and during the Holocene Thermal Maximum ∼6 kya, which coincide with increases in annual mean SST, reduction in sea-ice covers, declines in suitable habitat, and shifts in suitable habitat northwards. Furthermore, we show how individuals sampled from west and east Greenland are genetically, morphologically, and ecologically distinct. We find bears sampled in west Greenland to be larger, more genetically diverse and have diets dominated by ringed seals, whereas bears from east Greenland are smaller and less diverse with more varied diets, putatively driven by regional biotic differences. Taken together, we provide novel insights into the vulnerability of polar bears to environmental change, and how the Arctic marine ecosystem plays a vital role in shaping the evolutionary and ecological trajectories of its inhabitants.TeaserMultivariate investigations of the environment’s role in the evolutionary ecology of Greenlandic polar bears.
Science Advances arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.10.06.511126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Science Advances arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.10.06.511126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, Germany, DenmarkPublisher:The Royal Society Authors: Marie Louis; Mikkel Skovrind; Jose Alfredo Samaniego Castruita; Cristina Garilao; +11 AuthorsMarie Louis; Mikkel Skovrind; Jose Alfredo Samaniego Castruita; Cristina Garilao; Kristin Kaschner; Shyam Gopalakrishnan; James S. Haile; Christian Lydersen; Kit M. Kovacs; Eva Garde; Mads Peter Heide-Jørgensen; Lianne Postma; Steven H. Ferguson; Eske Willerslev; Eline D. Lorenzen;The Arctic is warming at an unprecedented rate, with unknown consequences for endemic fauna. However, Earth has experienced severe climatic oscillations in the past, and understanding how species responded to them might provide insight into their resilience to near-future climatic predictions. Little is known about the responses of Arctic marine mammals to past climatic shifts, but narwhals ( Monodon monoceros ) are considered one of the endemic Arctic species most vulnerable to environmental change. Here, we analyse 121 complete mitochondrial genomes from narwhals sampled across their range and use them in combination with species distribution models to elucidate the influence of past and ongoing climatic shifts on their population structure and demographic history. We find low levels of genetic diversity and limited geographic structuring of genetic clades. We show that narwhals experienced a long-term low effective population size, which increased after the Last Glacial Maximum, when the amount of suitable habitat expanded. Similar post-glacial habitat release has been a key driver of population size expansion of other polar marine predators. Our analyses indicate that habitat availability has been critical to the success of narwhals, raising concerns for their fate in an increasingly warming Arctic.
Proceedings of the R... arrow_drop_down University of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 45 citations 45 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down University of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Denmark, GermanyPublisher:Wiley Mikkel Skovrind; Marie Louis; Michael V. Westbury; Cristina Garilao; Kristin Kaschner; José Alfredo Samaniego Castruita; Shyam Gopalakrishnan; Steen Wilhelm Knudsen; James S. Haile; Love Dalén; Ilya G. Meshchersky; Olga V. Shpak; Dmitry M. Glazov; Viatcheslav V. Rozhnov; Dennis I. Litovka; Vera V. Krasnova; Anton D. Chernetsky; Vsevolod M. Bel‘kovich; Christian Lydersen; Kit M. Kovacs; Mads Peter Heide‐Jørgensen; Lianne Postma; Steven H. Ferguson; Eline D. Lorenzen;doi: 10.1111/mec.15915
pmid: 33825233
AbstractSeveral Arctic marine mammal species are predicted to be negatively impacted by rapid sea ice loss associated with ongoing ocean warming. However, consequences for Arctic whales remain uncertain. To investigate how Arctic whales responded to past climatic fluctuations, we analysed 206 mitochondrial genomes from beluga whales (Delphinapterus leucas) sampled across their circumpolar range, and four nuclear genomes, covering both the Atlantic and the Pacific Arctic region. We found four well‐differentiated mitochondrial lineages, which were established before the onset of the last glacial expansion ~110 thousand years ago. Our findings suggested these lineages diverged in allopatry, reflecting isolation of populations during glacial periods when the Arctic sea‐shelf was covered by multiyear sea ice. Subsequent population expansion and secondary contact between the Atlantic and Pacific Oceans shaped the current geographic distribution of lineages, and may have facilitated mitochondrial introgression. Our demographic reconstructions based on both mitochondrial and nuclear genomes showed markedly lower population sizes during the Last Glacial Maximum (LGM) compared to the preceding Eemian and current Holocene interglacial periods. Habitat modelling similarly revealed less suitable habitat during the LGM (glacial) than at present (interglacial). Together, our findings suggested the association between climate, population size, and available habitat in belugas. Forecasts for year 2100 showed that beluga habitat will decrease and shift northwards as oceans continue to warm, putatively leading to population declines in some beluga populations. Finally, we identified vulnerable populations which, if extirpated as a consequence of ocean warming, will lead to a substantial decline of species‐wide haplotype diversity.
OceanRep arrow_drop_down Molecular EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.15915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Molecular EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.15915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Annual Reviews Funded by:EC | TALENTEC| TALENTPer J. Palsbøll; Andrea A. Cabrera; Andrea A. Cabrera; Vania E. Rivera-León; Xenia Moreira Lopes; Eline D. Lorenzen; Marie Louis; Dóra Székely; Alba Rey-Iglesia; Tom Oosting; Tom Oosting; Martine Bérubé;Studies of cetacean evolution using genetics and other biomolecules have come a long way—from the use of allozymes and short sequences of mitochondrial or nuclear DNA to the assembly of full nuclear genomes and characterization of proteins and lipids. Cetacean research has also advanced from using only contemporary samples to analyzing samples dating back thousands of years, and to retrieving data from indirect environmental sources, including water or sediments. Combined, these studies have profoundly deepened our understanding of the origin of cetaceans; their adaptation and speciation processes; and of the past population change, migration, and admixture events that gave rise to the diversity of cetaceans found today.
Annual Review of Eco... arrow_drop_down Annual Review of Ecology Evolution and SystematicsArticle . 2021License: taverneData sources: University of Groningen Research PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Annual Review of Ecology Evolution and SystematicsArticle . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-ecolsys-012021-105003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Annual Review of Eco... arrow_drop_down Annual Review of Ecology Evolution and SystematicsArticle . 2021License: taverneData sources: University of Groningen Research PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Annual Review of Ecology Evolution and SystematicsArticle . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-ecolsys-012021-105003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Denmark, AustraliaPublisher:Springer Science and Business Media LLC Price, Gilbert J.; Louys, Julien; Faith, J. Tyler; Lorenzen, Eline; Westaway, Michael C.;Too many meta-analyses of extinctions of giant kangaroos or huge sloths use data that are poor or poorly understood, warn Gilbert J. Price and colleagues. Too many meta-analyses of extinctions of giant kangaroos or huge sloths usedata that are poor or poorly understood, warn Gilbert J. Price and colleagues.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018Full-Text: http://hdl.handle.net/10072/381350Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-05330-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018Full-Text: http://hdl.handle.net/10072/381350Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-05330-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, Norway, Sweden, GermanyPublisher:Elsevier BV Publicly fundedFunded by:SNSF | Genome-wide consequences ..., SNSF | Using pre-fragmentation p..., EC | Extinction GenomicsSNSF| Genome-wide consequences of population declines in extinct and extant species ,SNSF| Using pre-fragmentation palaeogenomes to assess the likelihood of genetic rescue in endangered species ,EC| Extinction GenomicsAuthors: Adrian M. Lister; Mikkel-Holger S. Sinding; Mikkel-Holger S. Sinding; Peter D. Heintzman; +33 AuthorsAdrian M. Lister; Mikkel-Holger S. Sinding; Mikkel-Holger S. Sinding; Peter D. Heintzman; Love Dalén; Love Dalén; Sergey Vartanyan; Yvonne L. Chan; Yvonne L. Chan; Hervé Bocherens; Olga Potapova; Olga Potapova; Marcin Kierczak; Stefan Prost; Joshua D. Kapp; David Díez-del-Molino; Johannes van der Plicht; Anders Götherström; Eske Willerslev; Irina V. Kirillova; Senthilvel K. S. S. Nathan; Fátima Sánchez-Barreiro; Sergey Fedorov; Guojie Zhang; M. Thomas P. Gilbert; M. Thomas P. Gilbert; Oliver A. Ryder; F. K. Shidlovskiy; Edana Lord; Edana Lord; David W. G. Stanton; Eline D. Lorenzen; Nicolas Dussex; Nicolas Dussex; Benoit Goossens; A. V. Protopopov; Beth Shapiro;Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species' extinction. Analysis of the nuclear genome from a ∼18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bølling-Allerød interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species.
CORE arrow_drop_down Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research ArchiveUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2020.07.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research ArchiveUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2020.07.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Denmark, United Kingdom, United Kingdom, United States, Spain, Australia, AustraliaPublisher:Springer Science and Business Media LLC Persaram Batra; Eline D. Lorenzen; Kelly E. Graf; Ludovic Orlando; Alan M. Haywood; Morten Meldgaard; Mikhail V. Sablin; David A. Byers; Jonas Binladen; Thomas W. Stafford; David Nogués-Bravo; Robert S. Sommer; H. Gregory McDonald; Jesper Stenderup; Dennis L. Jenkins; S. P. Davydov; Marc A. Suchard; Andrew Ugan; Andrew Ugan; Andrew Ugan; Taras Sipko; Ted Goebel; Alexei Tikhonov; Alan Cooper; Katharine A. Marske; G. G. Boeskorov; Michael K. Borregaard; Robert K. Wayne; Kasper Munch; Larry D. Martin; Eric Scott; Dick Mol; Grant D. Zazula; M. Thomas P. Gilbert; Duane G. Froese; Jaco Weinstock; Paul J. Valdes; Joy S. Singarayer; James Haile; Pavel A. Kosintsev; Eske Willerslev; Michael Hofreiter; Kim Aaris-Sørensen; Tatyana Kuznetsova; James A. Burns; Xulong Lai; Andrei Sher; Rane Willerslev; Simon Y. W. Ho; Carsten Rahbek; Klaus-Peter Koepfli; Beth Shapiro; Rasmus Nielsen; Rasmus Nielsen; Elisabeth Stephan; Jennifer A. Leonard; Jennifer A. Leonard; Paula F. Campos; Morten Rasmussen;Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
KU ScholarWorks arrow_drop_down KU ScholarWorksArticle . 2014Full-Text: http://hdl.handle.net/1808/14688Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature10574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 568 citations 568 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 56visibility views 56 download downloads 93 Powered bymore_vert KU ScholarWorks arrow_drop_down KU ScholarWorksArticle . 2014Full-Text: http://hdl.handle.net/1808/14688Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature10574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Funded by:EC | SEA-Quester, EC | POLARCEC| SEA-Quester ,EC| POLARCSchreiber, Lennart; Ribeiro, Sofia; Jackson, Rebecca; Kvorning, Anna Bang; Nota, Kevin; O'Regan, Matt; Pearce, Christof; Seersholm, Frederik Valeur; Seidenkrantz, Marit-Solveig; Zimmermann, Heike H.; Lorenzen, Eline D.;Abstract Arctic marine ecosystems have undergone notable reconfigurations in response to Holocene environmental shifts. Yet our understanding of how marine mammal occurrence was impacted remains limited, due to their relative scarcity in the fossil record. We reconstructed the occurrence of marine mammals across the past 12,000 years through genetic detections based on sedimentary ancient DNA from four marine sediment cores collected around Northern Greenland, and integrated the findings with local and regional environmental proxy records. Our findings indicate a close association between the establishment of marine mammals at densities detectable in marine sediments and the deglaciation of marine environments at the onset of the Holocene. Further, we identified air temperature as a significant driver of community change across time. Several marine mammals were detected in the sediments earlier than in the fossil record, for some species by several thousands of years. During the Early-to-Mid Holocene, a period of past warmer climate, we recorded northward distribution shifts of temperate and low-arctic marine mammal species. Our findings provide unique, long-term baseline data on the occurrence of marine mammals around Northern Greenland, providing novel insights into past community dynamics and the effects of Holocene climatic shifts on the region’s marine ecosystems.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-5291490/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-5291490/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Australia, Australia, DenmarkPublisher:Wiley Funded by:ARC | Discovery Projects - Gran..., ARC | Future Fellowships - Gran..., ARC | ARC Future Fellowships - ...ARC| Discovery Projects - Grant ID: DP180102392 ,ARC| Future Fellowships - Grant ID: FT140101192 ,ARC| ARC Future Fellowships - Grant ID: FT200100870Stuart C. Brown; Camille Mellin; Jorge García Molinos; Eline D. Lorenzen; Damien A. Fordham;AbstractThe vulnerability of marine biodiversity to accelerated rates of climatic change is poorly understood. By developing a new method for identifying extreme oceanic warming events during Earth's most recent deglaciation, and comparing these to 21st century projections, we show that future rates of ocean warming will disproportionately affect the most speciose marine communities, potentially threatening biodiversity in more than 70% of current‐day global hotspots of marine species richness. The persistence of these richest areas of marine biodiversity will require many species to move well beyond the biogeographic realm where they are endemic, at rates of redistribution not previously seen. Our approach for quantifying exposure of biodiversity to past and future rates of oceanic warming provides new context and scalable information for deriving and strengthening conservation actions to safeguard marine biodiversity under climate change.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 DenmarkPublisher:Authorea, Inc. Funded by:RCN | "Arctic marine mammals in..., EC | TALENTRCN| "Arctic marine mammals in a time of climate change:a Kongsfjorden Case Study(""ARK"" – ARktiske Klima forandringer Konsekvenser)" ,EC| TALENTAuthors: Morgan L. McCarthy; Alba Refoyo Martínez; Steven H. Ferguson; Aqqalu Rosing‐Asvid; +11 AuthorsMorgan L. McCarthy; Alba Refoyo Martínez; Steven H. Ferguson; Aqqalu Rosing‐Asvid; Rune Dietz; Binia De Cahsan; Lennart Schreiber; Eline D. Lorenzen; Rikke Guldborg Hansen; Raphaela Stimmelmayr; Anna Bryan; Lori Quakenbush; Christian Lydersen; Kit M. Kovacs; Morten Tange Olsen;pmid: 39835612
ABSTRACTThe Arctic environment plays a critical role in the global climate system and marine biodiversity. The region's ice‐covered expanses provide essential breeding and feeding grounds for a diverse assemblage of marine species, who have adapted to thrive in these harsh conditions and consequently are under threat from global warming. The bearded seal (Erignathus barbatus), including two subspecies (E. barbatus nauticus—Pacific and E. barbatus barbatus—Atlantic), is an ice‐obligate Arctic species using sea ice for many aspects of its life history, rendering it particularly vulnerable to sea ice loss. It is one of the least studied and hence enigmatic of the Arctic marine mammals, with little knowledge regarding genetic structure, diversity, adaptations, and demographic history, consequently hampering management and conservation efforts. Here, we sequenced 70 whole nuclear genomes from across most of the species' circumpolar range, finding significant genetic structure between the Pacific and the Atlantic subspecies, which diverged during the Penultimate Glacial Period (~200 KYA). Remarkably, we found fine‐scale genetic structure within both subspecies, with at least two distinct populations in the Pacific and three in the Atlantic. We hypothesise sea‐ice dynamics and bathymetry had a prominent role in shaping bearded seal genetic structure and diversity. Our analyses of highly differentiated genomic regions can be used to complement the health, physiological, and behavioural research needed to conserve this species. In addition, we provide recommendations for management units that can be used to more specifically assess climatic and anthropogenic impacts on bearded seal populations.
Molecular Ecology arrow_drop_down Copenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.172114675.57316404/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Molecular Ecology arrow_drop_down Copenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.172114675.57316404/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Denmark, FinlandPublisher:Cold Spring Harbor Laboratory Funded by:NSERCNSERCMichael V. Westbury; Stuart C. Brown; Julie Lorenzen; Stuart O’Neill; Michael B. Scott; Julia McCuaig; Christina Cheung; Edward Armstrong; Paul J. Valdes; José Alfredo Samaniego Castruita; Andrea A. Cabrera; Stine Keibel Blom; Rune Dietz; Christian Sonne; Marie Louis; Anders Galatius; Damien A. Fordham; Sofia Ribeiro; Paul Szpak; Eline D. Lorenzen;AbstractThe Arctic is among the most climatically sensitive environments on Earth, and the disappearance of multiyear sea-ice in the Arctic Ocean is predicted within decades. As apex predators, polar bears are sentinel species for addressing the impact of environmental variability on Arctic marine ecosystems. By integrating genomics, isotopic analysis, morphometrics, and ecological modelling, we investigate how Holocene environmental changes affected the evolutionary ecology of polar bears around Greenland. We show that throughout the last ∼11,000 years, Greenlandic polar bears have been heavily influenced by changes in sea-surface temperature (SST) and sea-ice cover. Most notable are major reductions in effective population size at the beginning of the Holocene and during the Holocene Thermal Maximum ∼6 kya, which coincide with increases in annual mean SST, reduction in sea-ice covers, declines in suitable habitat, and shifts in suitable habitat northwards. Furthermore, we show how individuals sampled from west and east Greenland are genetically, morphologically, and ecologically distinct. We find bears sampled in west Greenland to be larger, more genetically diverse and have diets dominated by ringed seals, whereas bears from east Greenland are smaller and less diverse with more varied diets, putatively driven by regional biotic differences. Taken together, we provide novel insights into the vulnerability of polar bears to environmental change, and how the Arctic marine ecosystem plays a vital role in shaping the evolutionary and ecological trajectories of its inhabitants.TeaserMultivariate investigations of the environment’s role in the evolutionary ecology of Greenlandic polar bears.
Science Advances arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.10.06.511126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Science Advances arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.10.06.511126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, Germany, DenmarkPublisher:The Royal Society Authors: Marie Louis; Mikkel Skovrind; Jose Alfredo Samaniego Castruita; Cristina Garilao; +11 AuthorsMarie Louis; Mikkel Skovrind; Jose Alfredo Samaniego Castruita; Cristina Garilao; Kristin Kaschner; Shyam Gopalakrishnan; James S. Haile; Christian Lydersen; Kit M. Kovacs; Eva Garde; Mads Peter Heide-Jørgensen; Lianne Postma; Steven H. Ferguson; Eske Willerslev; Eline D. Lorenzen;The Arctic is warming at an unprecedented rate, with unknown consequences for endemic fauna. However, Earth has experienced severe climatic oscillations in the past, and understanding how species responded to them might provide insight into their resilience to near-future climatic predictions. Little is known about the responses of Arctic marine mammals to past climatic shifts, but narwhals ( Monodon monoceros ) are considered one of the endemic Arctic species most vulnerable to environmental change. Here, we analyse 121 complete mitochondrial genomes from narwhals sampled across their range and use them in combination with species distribution models to elucidate the influence of past and ongoing climatic shifts on their population structure and demographic history. We find low levels of genetic diversity and limited geographic structuring of genetic clades. We show that narwhals experienced a long-term low effective population size, which increased after the Last Glacial Maximum, when the amount of suitable habitat expanded. Similar post-glacial habitat release has been a key driver of population size expansion of other polar marine predators. Our analyses indicate that habitat availability has been critical to the success of narwhals, raising concerns for their fate in an increasingly warming Arctic.
Proceedings of the R... arrow_drop_down University of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 45 citations 45 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down University of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Denmark, GermanyPublisher:Wiley Mikkel Skovrind; Marie Louis; Michael V. Westbury; Cristina Garilao; Kristin Kaschner; José Alfredo Samaniego Castruita; Shyam Gopalakrishnan; Steen Wilhelm Knudsen; James S. Haile; Love Dalén; Ilya G. Meshchersky; Olga V. Shpak; Dmitry M. Glazov; Viatcheslav V. Rozhnov; Dennis I. Litovka; Vera V. Krasnova; Anton D. Chernetsky; Vsevolod M. Bel‘kovich; Christian Lydersen; Kit M. Kovacs; Mads Peter Heide‐Jørgensen; Lianne Postma; Steven H. Ferguson; Eline D. Lorenzen;doi: 10.1111/mec.15915
pmid: 33825233
AbstractSeveral Arctic marine mammal species are predicted to be negatively impacted by rapid sea ice loss associated with ongoing ocean warming. However, consequences for Arctic whales remain uncertain. To investigate how Arctic whales responded to past climatic fluctuations, we analysed 206 mitochondrial genomes from beluga whales (Delphinapterus leucas) sampled across their circumpolar range, and four nuclear genomes, covering both the Atlantic and the Pacific Arctic region. We found four well‐differentiated mitochondrial lineages, which were established before the onset of the last glacial expansion ~110 thousand years ago. Our findings suggested these lineages diverged in allopatry, reflecting isolation of populations during glacial periods when the Arctic sea‐shelf was covered by multiyear sea ice. Subsequent population expansion and secondary contact between the Atlantic and Pacific Oceans shaped the current geographic distribution of lineages, and may have facilitated mitochondrial introgression. Our demographic reconstructions based on both mitochondrial and nuclear genomes showed markedly lower population sizes during the Last Glacial Maximum (LGM) compared to the preceding Eemian and current Holocene interglacial periods. Habitat modelling similarly revealed less suitable habitat during the LGM (glacial) than at present (interglacial). Together, our findings suggested the association between climate, population size, and available habitat in belugas. Forecasts for year 2100 showed that beluga habitat will decrease and shift northwards as oceans continue to warm, putatively leading to population declines in some beluga populations. Finally, we identified vulnerable populations which, if extirpated as a consequence of ocean warming, will lead to a substantial decline of species‐wide haplotype diversity.
OceanRep arrow_drop_down Molecular EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.15915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Molecular EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.15915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Annual Reviews Funded by:EC | TALENTEC| TALENTPer J. Palsbøll; Andrea A. Cabrera; Andrea A. Cabrera; Vania E. Rivera-León; Xenia Moreira Lopes; Eline D. Lorenzen; Marie Louis; Dóra Székely; Alba Rey-Iglesia; Tom Oosting; Tom Oosting; Martine Bérubé;Studies of cetacean evolution using genetics and other biomolecules have come a long way—from the use of allozymes and short sequences of mitochondrial or nuclear DNA to the assembly of full nuclear genomes and characterization of proteins and lipids. Cetacean research has also advanced from using only contemporary samples to analyzing samples dating back thousands of years, and to retrieving data from indirect environmental sources, including water or sediments. Combined, these studies have profoundly deepened our understanding of the origin of cetaceans; their adaptation and speciation processes; and of the past population change, migration, and admixture events that gave rise to the diversity of cetaceans found today.
Annual Review of Eco... arrow_drop_down Annual Review of Ecology Evolution and SystematicsArticle . 2021License: taverneData sources: University of Groningen Research PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Annual Review of Ecology Evolution and SystematicsArticle . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-ecolsys-012021-105003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Annual Review of Eco... arrow_drop_down Annual Review of Ecology Evolution and SystematicsArticle . 2021License: taverneData sources: University of Groningen Research PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Annual Review of Ecology Evolution and SystematicsArticle . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-ecolsys-012021-105003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu