- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article 2020 Australia, ItalyPublisher:Springer International Publishing Jonas Manuel Gremmelspacher; Julija Sivolova; Emanuele Naboni; Vahid M. Nik; Vahid M. Nik; Vahid M. Nik;handle: 11381/2884808
High energy use for space conditioning in residential buildings is a significant economic factor for owners and tenants, but also contributes to resource depletion and carbon emissions due to energy generation. Many existing dwellings should thus be retrofitted in order to fulfil the ambitious EU carbon emission mitigation goals by 2050. To investigate how future climate resilience can be implemented in the design process of retrofitting measures, this study concentrates on real case studies that have been retrofitted during the past decade. The performance of retrofitting measures for four case studies in Denmark and Germany were investigated under future climate projections and compared between the non-retrofitted initial stage of the buildings and the retrofitted stage. Building performance simulations were employed to investigate how severe the effects of climate change until the end of the 21st century on the material choice and system design is. Results show that summertime thermal comfort will be a major challenge in the future. Energy use for space heating was seen to decrease for periods in the future, also the severity of cold events decreased, resulting in a decline of heating peak loads. Additionally, not considering extreme events was proven to lead to miss-dimensioning thermal systems. Overall, the study shows that adaptation of informed decisions, accounting for the uncertainties of future climate, can bring a significant benefit for energy-efficient retrofits, potentially promoting adequate passive measures as well as free cooling to prevent overheating and enhance heat removal.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Part of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-58808-3_26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Part of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-58808-3_26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2024 ItalyPublisher:Springer Nature Singapore Authors: Emanuele Naboni; Marcello Turrini; Barbara Gherri;handle: 11381/2974433 , 11381/2997194
Abstract Climate change is a major global challenge with urgent and significant threats to the planet. While national and international efforts address the issue, it’s important to recognize the unique local challenges and opportunities. Recent research emphasizes the need for hyperlocalized analyses to understand climate change’s impacts on ecology, human health, and decarbonization. This study aims to develop a workflow to comprehend the effects of climate change in a particular district for 2030 and 2050, using the territory of Sassuolo (IT) as a reference, and identifying the most vulnerable and resilient areas. The objectives are to analyze temperature changes at a hyperlocal level, understand factors that influence delta temperature, and examine effects on biodiversity, comfort, health, and building energy use. ENVI- met software supported microclimate simulations to obtain hyperlocalized analyses of temperature patterns in five representative areas. The study conducted a delta temperature analysis to understand the factors that influence temperature changes in the district. Parametric and Grasshopper-based workflows highlighted temperature variations’ effects on ecological factors, human comfort, and health, and building energy consumption. Ultimately, this study contributes to comprehending the effects of climate change at a hyperlocal level, aiding targeted interventions to mitigate and adapt to its effects. Identifying the most vulnerable and resilient areas helps develop effective policies and strategies for sustainable development. Results can inform global efforts to address climate change impacts in regions facing similar challenges.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-98...Part of book or chapter of book . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Part of book or chapter of book . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Part of book or chapter of book . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-981-99-8501-2_39&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-98...Part of book or chapter of book . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Part of book or chapter of book . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Part of book or chapter of book . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-981-99-8501-2_39&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 ItalyPublisher:Journal of Facade Design and Engineering Authors: Jacopo Gaspari; Emanuele Naboni; Caterina Ponzio; Adele Ricci;handle: 11585/655512 , 11381/2877951
Energy savings and indoor comfort are widely considered to be key priorities in the current architectural design trends. Additionally, the well-being and satisfaction of end users is a relevant issue when a human-centred perspective is adopted. The application of Climate Adaptive Building Shells (CABS) compared to conventional fa��ades offers appropriate opportunities for tackling these challenges. This paper reports the outcomes of a study performed on CABS in order to optimise the indoor comfort while calibrating the configuration of a dynamic fa��ade module. The horizontal louvres of the adaptive fa��ade are moved by an actuator that exploits the expansion of a thermo-active resin as it melts, by its absorption of energy. The actuation mechanism depends on the outdoor air temperature conditions and does not require a supply of energy. The performed simulation evidenced a decrease of approximately 4��C indoors when the dynamic module is fully efficient (21st June at 12 p.m.). Furthermore, the lux level is always within the comfort range for an office building (500-2000 lux) during both winter and summer scenarios. The optimised solution shows a substantial gain for energy performance and environmental sustainability. Moreover, the uniformity of distribution of daylight illuminance across the entire space is another associated advantage, giving interesting insights into potentials for architectural fa��ade design. Journal of Facade Design and Engineering, Vol. 7 No. 1 (2019): Special Issue Powerskin 2019
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/jfde.2019.1.2778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/jfde.2019.1.2778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Funded by:EC | ASCETICEC| ASCETICAuthors: Naboni E; Malcangi A; Zhang Y; Barzon F;handle: 11381/2877974
AbstractDesigners, in response to codes or voluntary ⬓green building⬽ programs, are increasingly concerned with building energy demand reduction, but they are not fully aware of the energy saving potential of architectural design. According to literature, building form, construction and material choices may be powerful drivers of energy efficiency ⬜ but a very few studies have quantified their actual effect in different climate, and none of the study is based on today computational possibilities. This research was inspired by, and attempts to verify, the ideas from two of the most influential books on sustainable design: ⬓Design With Climate⬽ by Olgyay (1963), which discussed strategies for climate-adapted architecture, and Lechner̽s ⬓Heating, Cooling and Lighting⬽ (1991), on how to reduce building energy needs by as much as 60 ⬜ 80 percent with proper architectural design decisions. Both books used results from building energy simulations made with limited computational resources available at the time. The research presented in this paper uses a genetic algorithms based approach for the optimization of heating, cooling and lighting energy demands of different building designs. In total, over 25 million different buildings constitute the optimization search space, and the most energy efficient design solutions were explored for 8 different climate zones. The building designs are varied by shape, orientation, window to wall ratio, component and construction types, materials, and different occupant behaviour. The research shows the best solution for each of the climates and compares them with Olgyay̽s findings. Finally, for each climate the energy saving potential is defined and then compared to Lechner's conclusions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Naboni E;handle: 11381/2877943
Abstract Life Cycle Assessment is increasingly becoming important in facade architectural design. The presented research aims to describe an LCA architectural design approach based on the use of a Facade Mockup. The approach is applied and tested for the design Telecom Sustainable Campus’ facade, in Rome. It is studied how a mockup could facilitate a more thorough LCA-based design processes, and how it could be the medium between design domains and the various stakeholders.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proeng.2017.04.236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proeng.2017.04.236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Evola, Gianpiero; Costanzo, Vincenzo; Magrì, Cristina; Margani, Giuseppe; Marletta, Luigi; Naboni, Emanuele;handle: 20.500.11769/392623 , 11381/2877912
Abstract In the energy simulation of buildings there has been little focus on their impact on the microclimate; simulation tools have usually dealt either with building or with outdoor simulation, and only recently these aspects are being interconnected. Within this framework, the paper describes a novel simulation workflow developed in the Grasshopper environment, where the Ladybug Tools are used to model the mutual relations amongst urban microclimate, building energy performance and outdoor thermal comfort. With reference to an urban canyon located in Catania, Southern Italy, the workflow – by coupling the indoor and the outdoor thermal field – provides both the dynamic thermal load of the buildings overlooking the canyon and the parameters needed to measure the outdoor comfort perceived by pedestrians. In comparison to other existing approaches, this workflow offers significant flexibility and makes it possible to perform a parametric investigation of the effects of different design solutions on both the indoor and the outdoor environment. The outdoor Mean Radiant Temperature calculated through the model is compared to on-site measurements performed with a black globe thermometer during two different days in the summer. The comparison suggests good agreement in the shaded areas of the canyon, but a non-negligible overestimation in sunlit areas. These results have driven the authors to a critical insight into the algorithms implanted in the Ladybug Tools, and have helped to highlight some critical issues that will be further investigated in upcoming research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.109946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.109946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 Italy, SwitzerlandPublisher:Elsevier BV Coccolo S; Mauree D; Naboni E; Kaempf J; Scartezzini J L;handle: 11381/2878000
The energy demand of buildings and outdoor human comfort are key elements of a sustainable urban design. The wind speed has an enormous impact on thermal sensation, but the sensation itself is hard to quantify. The objective of this paper is to understand how the wind influences thermal energy exchanges, and to quantify its impact on outdoor thermal sensation. In order to do so, three outdoor comfort models were selected. Each thermal model was then calculated for the EPFL campus (Switzerland) by coupling the software tools CitySim and RayMan. In order to factor the importance of local meteorological data, two different sources of data are used: the software Meteonorm and recorded onsite data. Results obtained underline the impact of the wind speed on the thermal perception of pedestrians, describing the sensitivity of each of the thermal models, as well as the environmental characteristics.
Energy Procedia arrow_drop_down Infoscience - École polytechnique fédérale de LausanneConference objectData sources: Infoscience - École polytechnique fédérale de LausanneArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down Infoscience - École polytechnique fédérale de LausanneConference objectData sources: Infoscience - École polytechnique fédérale de LausanneArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018 Switzerland, Australia, ItalyPublisher:MDPI AG Dasaraden Mauree; Silvia Coccolo; Amarasinghage Perera; Vahid Nik; Jean-Louis Scartezzini; Emanuele Naboni;Building more energy efficient and sustainable urban areas that will both mitigate the effect of climate change and adapt for the future climate, requires the development new tools and methods that can help urban planners, architect and communities achieve this goal. In the current study, we designed a workflow that links different methodologies developed separately, to derive the energy consumption of a university school campus for the future. Three different scenarios for typical future years (2039, 2069, 2099) were run as well as a renovation scenario (Minergie-P). We analyse the impact of climate change on the heating and cooling demand of the buildings and determined the relevance of the accounting of the local climate in this particular context. The results from the simulations showed that in the future there will a constant decrease in the heating demand while for the cooling demand there will be a significant increase. It was further demonstrated that when the local climate was taken into account there was an even higher rise in the cooling demand but also that the proposed renovations were not sufficient to design resilient buildings. We then discuss the implication of this work on the simulation of building energy consumption at the neighbourhood scale and the impact of future local climate on energy system design. We finally give a few perspective regarding improved urban design and possible pathways for the future urban areas.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/4/1134/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2018Full-Text: http://hdl.handle.net/11381/2877993Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201802.0109.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/4/1134/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2018Full-Text: http://hdl.handle.net/11381/2877993Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201802.0109.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:MDPI AG Authors: Sonetti G.; Brown M.; Naboni E.;doi: 10.3390/su11010254
handle: 11583/2747556 , 11381/2877935
Humans are at the center of global climate change: The United Nations Sustainable Development Goals (SDGs) are igniting sustainability with proactive, global, social goals, moving us away from the Brundtland paradigm ‘do nothing today to compromise tomorrows generation’. This promotes a regenerative shift in the sustainability concept, no longer only considering resources and energy, but also significant human-centric attributes. Despite this, precise ecological and sustainable attitudes have little prognostic value regarding final related individual human behavior. The global cultural challenge, dominated by technological innovations and business imperatives, alongside the mirroring technological fallacy and lack of ethical reasoning, makes the role of small actions, at individual and at academic scale even harder. This paper outlines the context in which universities can collaborate and contribute to triggering sustainability values, attitudes, and behavior within future regenerative societies. This contribution consists in three main areas: the first analyzes the issue of sustainability transitions at the individual scale, where influencing factors and value–behavior links are presented as reviewed from a number of multi and transdisciplinary scholars’ works. The second part enlarges the picture to the global dimension, tracing the ideological steps of our current environmental crisis, from the differences in prevailing western and eastern values, tradition, and perspectives, to the technological fallacy and the power of the narratives of changes. Finally, the task of our role as academics in the emerging ‘integrative humanities’ science is outlined with education promoted as an essential driver in moving from sustainability to regenerative paradigms.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11010254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11010254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Naboni E; Natanian J; Brizzi G; Florio P; Chokhachian A; Galanos T; Rastogi P;handle: 11381/2877969
Abstract The regenerative approach to design goes beyond limiting the environmental impact of the built environment and towards the enrichment of the ecosystem, adaptation to climate change, and the improvement of human health. This concept is being applied to buildings through new standards such as the Living Building Challenge, yet examples of implementation of regenerative design at the urban scale are rare. While this is a promising direction for sustainable design, in theory new metrics, design tools and workflows need to be developed to translate regenerative design concepts into practice effectively. Among other factors, barriers to implementation remain rooted in the shortcomings of existing urban simulation tools to evaluate a wide range of performance metrics simultaneously. This paper thus proposes a prototype workflow to evaluate regenerative performance using existing evaluation tools in a single digital workflow. A series of existing and customised plugins, most of which are already in use and open source, were integrated into a multi-parametric workflow based on the Grasshopper visual programming tool. The workflow was tested on Malaga as a case study and incorporated key performance indicators related to outdoor human thermal comfort, biophilia, daylight performance, and energy use and production, based on data exchange and synergies across the different tools. These indicators were evaluated for present and future climate scenarios obtained from a weather generator. This paper demonstrates the potential of this workflow to receive visual feedback on various aspects of regenerative urban design, thus enabling designers to more effectively pursue an evidence-based urban design process.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article 2020 Australia, ItalyPublisher:Springer International Publishing Jonas Manuel Gremmelspacher; Julija Sivolova; Emanuele Naboni; Vahid M. Nik; Vahid M. Nik; Vahid M. Nik;handle: 11381/2884808
High energy use for space conditioning in residential buildings is a significant economic factor for owners and tenants, but also contributes to resource depletion and carbon emissions due to energy generation. Many existing dwellings should thus be retrofitted in order to fulfil the ambitious EU carbon emission mitigation goals by 2050. To investigate how future climate resilience can be implemented in the design process of retrofitting measures, this study concentrates on real case studies that have been retrofitted during the past decade. The performance of retrofitting measures for four case studies in Denmark and Germany were investigated under future climate projections and compared between the non-retrofitted initial stage of the buildings and the retrofitted stage. Building performance simulations were employed to investigate how severe the effects of climate change until the end of the 21st century on the material choice and system design is. Results show that summertime thermal comfort will be a major challenge in the future. Energy use for space heating was seen to decrease for periods in the future, also the severity of cold events decreased, resulting in a decline of heating peak loads. Additionally, not considering extreme events was proven to lead to miss-dimensioning thermal systems. Overall, the study shows that adaptation of informed decisions, accounting for the uncertainties of future climate, can bring a significant benefit for energy-efficient retrofits, potentially promoting adequate passive measures as well as free cooling to prevent overheating and enhance heat removal.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Part of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-58808-3_26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Part of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-58808-3_26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2024 ItalyPublisher:Springer Nature Singapore Authors: Emanuele Naboni; Marcello Turrini; Barbara Gherri;handle: 11381/2974433 , 11381/2997194
Abstract Climate change is a major global challenge with urgent and significant threats to the planet. While national and international efforts address the issue, it’s important to recognize the unique local challenges and opportunities. Recent research emphasizes the need for hyperlocalized analyses to understand climate change’s impacts on ecology, human health, and decarbonization. This study aims to develop a workflow to comprehend the effects of climate change in a particular district for 2030 and 2050, using the territory of Sassuolo (IT) as a reference, and identifying the most vulnerable and resilient areas. The objectives are to analyze temperature changes at a hyperlocal level, understand factors that influence delta temperature, and examine effects on biodiversity, comfort, health, and building energy use. ENVI- met software supported microclimate simulations to obtain hyperlocalized analyses of temperature patterns in five representative areas. The study conducted a delta temperature analysis to understand the factors that influence temperature changes in the district. Parametric and Grasshopper-based workflows highlighted temperature variations’ effects on ecological factors, human comfort, and health, and building energy consumption. Ultimately, this study contributes to comprehending the effects of climate change at a hyperlocal level, aiding targeted interventions to mitigate and adapt to its effects. Identifying the most vulnerable and resilient areas helps develop effective policies and strategies for sustainable development. Results can inform global efforts to address climate change impacts in regions facing similar challenges.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-98...Part of book or chapter of book . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Part of book or chapter of book . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Part of book or chapter of book . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-981-99-8501-2_39&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-98...Part of book or chapter of book . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Part of book or chapter of book . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Part of book or chapter of book . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-981-99-8501-2_39&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 ItalyPublisher:Journal of Facade Design and Engineering Authors: Jacopo Gaspari; Emanuele Naboni; Caterina Ponzio; Adele Ricci;handle: 11585/655512 , 11381/2877951
Energy savings and indoor comfort are widely considered to be key priorities in the current architectural design trends. Additionally, the well-being and satisfaction of end users is a relevant issue when a human-centred perspective is adopted. The application of Climate Adaptive Building Shells (CABS) compared to conventional fa��ades offers appropriate opportunities for tackling these challenges. This paper reports the outcomes of a study performed on CABS in order to optimise the indoor comfort while calibrating the configuration of a dynamic fa��ade module. The horizontal louvres of the adaptive fa��ade are moved by an actuator that exploits the expansion of a thermo-active resin as it melts, by its absorption of energy. The actuation mechanism depends on the outdoor air temperature conditions and does not require a supply of energy. The performed simulation evidenced a decrease of approximately 4��C indoors when the dynamic module is fully efficient (21st June at 12 p.m.). Furthermore, the lux level is always within the comfort range for an office building (500-2000 lux) during both winter and summer scenarios. The optimised solution shows a substantial gain for energy performance and environmental sustainability. Moreover, the uniformity of distribution of daylight illuminance across the entire space is another associated advantage, giving interesting insights into potentials for architectural fa��ade design. Journal of Facade Design and Engineering, Vol. 7 No. 1 (2019): Special Issue Powerskin 2019
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/jfde.2019.1.2778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/jfde.2019.1.2778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Funded by:EC | ASCETICEC| ASCETICAuthors: Naboni E; Malcangi A; Zhang Y; Barzon F;handle: 11381/2877974
AbstractDesigners, in response to codes or voluntary ⬓green building⬽ programs, are increasingly concerned with building energy demand reduction, but they are not fully aware of the energy saving potential of architectural design. According to literature, building form, construction and material choices may be powerful drivers of energy efficiency ⬜ but a very few studies have quantified their actual effect in different climate, and none of the study is based on today computational possibilities. This research was inspired by, and attempts to verify, the ideas from two of the most influential books on sustainable design: ⬓Design With Climate⬽ by Olgyay (1963), which discussed strategies for climate-adapted architecture, and Lechner̽s ⬓Heating, Cooling and Lighting⬽ (1991), on how to reduce building energy needs by as much as 60 ⬜ 80 percent with proper architectural design decisions. Both books used results from building energy simulations made with limited computational resources available at the time. The research presented in this paper uses a genetic algorithms based approach for the optimization of heating, cooling and lighting energy demands of different building designs. In total, over 25 million different buildings constitute the optimization search space, and the most energy efficient design solutions were explored for 8 different climate zones. The building designs are varied by shape, orientation, window to wall ratio, component and construction types, materials, and different occupant behaviour. The research shows the best solution for each of the climates and compares them with Olgyay̽s findings. Finally, for each climate the energy saving potential is defined and then compared to Lechner's conclusions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Naboni E;handle: 11381/2877943
Abstract Life Cycle Assessment is increasingly becoming important in facade architectural design. The presented research aims to describe an LCA architectural design approach based on the use of a Facade Mockup. The approach is applied and tested for the design Telecom Sustainable Campus’ facade, in Rome. It is studied how a mockup could facilitate a more thorough LCA-based design processes, and how it could be the medium between design domains and the various stakeholders.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proeng.2017.04.236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proeng.2017.04.236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Evola, Gianpiero; Costanzo, Vincenzo; Magrì, Cristina; Margani, Giuseppe; Marletta, Luigi; Naboni, Emanuele;handle: 20.500.11769/392623 , 11381/2877912
Abstract In the energy simulation of buildings there has been little focus on their impact on the microclimate; simulation tools have usually dealt either with building or with outdoor simulation, and only recently these aspects are being interconnected. Within this framework, the paper describes a novel simulation workflow developed in the Grasshopper environment, where the Ladybug Tools are used to model the mutual relations amongst urban microclimate, building energy performance and outdoor thermal comfort. With reference to an urban canyon located in Catania, Southern Italy, the workflow – by coupling the indoor and the outdoor thermal field – provides both the dynamic thermal load of the buildings overlooking the canyon and the parameters needed to measure the outdoor comfort perceived by pedestrians. In comparison to other existing approaches, this workflow offers significant flexibility and makes it possible to perform a parametric investigation of the effects of different design solutions on both the indoor and the outdoor environment. The outdoor Mean Radiant Temperature calculated through the model is compared to on-site measurements performed with a black globe thermometer during two different days in the summer. The comparison suggests good agreement in the shaded areas of the canyon, but a non-negligible overestimation in sunlit areas. These results have driven the authors to a critical insight into the algorithms implanted in the Ladybug Tools, and have helped to highlight some critical issues that will be further investigated in upcoming research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.109946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.109946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 Italy, SwitzerlandPublisher:Elsevier BV Coccolo S; Mauree D; Naboni E; Kaempf J; Scartezzini J L;handle: 11381/2878000
The energy demand of buildings and outdoor human comfort are key elements of a sustainable urban design. The wind speed has an enormous impact on thermal sensation, but the sensation itself is hard to quantify. The objective of this paper is to understand how the wind influences thermal energy exchanges, and to quantify its impact on outdoor thermal sensation. In order to do so, three outdoor comfort models were selected. Each thermal model was then calculated for the EPFL campus (Switzerland) by coupling the software tools CitySim and RayMan. In order to factor the importance of local meteorological data, two different sources of data are used: the software Meteonorm and recorded onsite data. Results obtained underline the impact of the wind speed on the thermal perception of pedestrians, describing the sensitivity of each of the thermal models, as well as the environmental characteristics.
Energy Procedia arrow_drop_down Infoscience - École polytechnique fédérale de LausanneConference objectData sources: Infoscience - École polytechnique fédérale de LausanneArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down Infoscience - École polytechnique fédérale de LausanneConference objectData sources: Infoscience - École polytechnique fédérale de LausanneArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018 Switzerland, Australia, ItalyPublisher:MDPI AG Dasaraden Mauree; Silvia Coccolo; Amarasinghage Perera; Vahid Nik; Jean-Louis Scartezzini; Emanuele Naboni;Building more energy efficient and sustainable urban areas that will both mitigate the effect of climate change and adapt for the future climate, requires the development new tools and methods that can help urban planners, architect and communities achieve this goal. In the current study, we designed a workflow that links different methodologies developed separately, to derive the energy consumption of a university school campus for the future. Three different scenarios for typical future years (2039, 2069, 2099) were run as well as a renovation scenario (Minergie-P). We analyse the impact of climate change on the heating and cooling demand of the buildings and determined the relevance of the accounting of the local climate in this particular context. The results from the simulations showed that in the future there will a constant decrease in the heating demand while for the cooling demand there will be a significant increase. It was further demonstrated that when the local climate was taken into account there was an even higher rise in the cooling demand but also that the proposed renovations were not sufficient to design resilient buildings. We then discuss the implication of this work on the simulation of building energy consumption at the neighbourhood scale and the impact of future local climate on energy system design. We finally give a few perspective regarding improved urban design and possible pathways for the future urban areas.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/4/1134/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2018Full-Text: http://hdl.handle.net/11381/2877993Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201802.0109.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/4/1134/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2018Full-Text: http://hdl.handle.net/11381/2877993Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201802.0109.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:MDPI AG Authors: Sonetti G.; Brown M.; Naboni E.;doi: 10.3390/su11010254
handle: 11583/2747556 , 11381/2877935
Humans are at the center of global climate change: The United Nations Sustainable Development Goals (SDGs) are igniting sustainability with proactive, global, social goals, moving us away from the Brundtland paradigm ‘do nothing today to compromise tomorrows generation’. This promotes a regenerative shift in the sustainability concept, no longer only considering resources and energy, but also significant human-centric attributes. Despite this, precise ecological and sustainable attitudes have little prognostic value regarding final related individual human behavior. The global cultural challenge, dominated by technological innovations and business imperatives, alongside the mirroring technological fallacy and lack of ethical reasoning, makes the role of small actions, at individual and at academic scale even harder. This paper outlines the context in which universities can collaborate and contribute to triggering sustainability values, attitudes, and behavior within future regenerative societies. This contribution consists in three main areas: the first analyzes the issue of sustainability transitions at the individual scale, where influencing factors and value–behavior links are presented as reviewed from a number of multi and transdisciplinary scholars’ works. The second part enlarges the picture to the global dimension, tracing the ideological steps of our current environmental crisis, from the differences in prevailing western and eastern values, tradition, and perspectives, to the technological fallacy and the power of the narratives of changes. Finally, the task of our role as academics in the emerging ‘integrative humanities’ science is outlined with education promoted as an essential driver in moving from sustainability to regenerative paradigms.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11010254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11010254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Naboni E; Natanian J; Brizzi G; Florio P; Chokhachian A; Galanos T; Rastogi P;handle: 11381/2877969
Abstract The regenerative approach to design goes beyond limiting the environmental impact of the built environment and towards the enrichment of the ecosystem, adaptation to climate change, and the improvement of human health. This concept is being applied to buildings through new standards such as the Living Building Challenge, yet examples of implementation of regenerative design at the urban scale are rare. While this is a promising direction for sustainable design, in theory new metrics, design tools and workflows need to be developed to translate regenerative design concepts into practice effectively. Among other factors, barriers to implementation remain rooted in the shortcomings of existing urban simulation tools to evaluate a wide range of performance metrics simultaneously. This paper thus proposes a prototype workflow to evaluate regenerative performance using existing evaluation tools in a single digital workflow. A series of existing and customised plugins, most of which are already in use and open source, were integrated into a multi-parametric workflow based on the Grasshopper visual programming tool. The workflow was tested on Malaga as a case study and incorporated key performance indicators related to outdoor human thermal comfort, biophilia, daylight performance, and energy use and production, based on data exchange and synergies across the different tools. These indicators were evaluated for present and future climate scenarios obtained from a weather generator. This paper demonstrates the potential of this workflow to receive visual feedback on various aspects of regenerative urban design, thus enabling designers to more effectively pursue an evidence-based urban design process.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu