- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV van der Lucas Woude; Peter J. Beek; Peter J. Beek; Han Houdijk; Trienke IJmker; Claudine J. C. Lamoth; S. Noten;The aim of this study was to examine whether impaired balance control is partly responsible for the increased energy cost of walking in persons with a lower limb amputation (LLA). Previous studies used external lateral stabilization to evaluate the energy cost for balance control; this caused a decrease in energy cost, with concomitant decreases in mean and variability of step width. Using a similar set-up, we expected larger decreases for LLA than able-bodied controls. Fifteen transtibial amputees (TT), 12 transfemoral amputees (TF), and 15 able-bodied controls (CO) walked with and without external lateral stabilization provided via spring like cords attached to the waist. Effects of this manipulation on energy cost, step parameters, and pelvic motion were evaluated between groups. TT (-5%) and CO (-3%) showed on average a small reduction in energy cost when walking with stabilization, whereas TF exhibited an increase in energy cost (+6.5%) The difference in the effect of stabilization was only significant between TT and TF. Step width, step width variability, and medio-lateral pelvic displacement decreased significantly with stabilization in all groups, especially in TT. Contrary to expectations, external lateral stabilization did not result in a larger decrease in the energy cost of walking for LLA compared to able-bodied controls, suggesting that balance control is not a major factor in the increased cost of walking in LLA. Alternatively, the increased energy cost with stabilization for TF suggests that restraining (medio-lateral) pelvic motion impeded necessary movement adaptations in LLA, and thus negated the postulated beneficial effects of stabilization on the energy cost of walking.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gaitpost.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gaitpost.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 NetherlandsPublisher:Springer Science and Business Media LLC IJmker, T.; Lamoth, C.J.C.; Houdijk, J.H.P.; Tolsma, M.; van der Woude, L.H.V.; Daffertshofer, A.; Beek, P.J.;pmid: 26298647
pmc: PMC4546819
Holding a handrail or using a cane may decrease the energy cost of walking in stroke survivors. However, the factors underlying this decrease have not yet been previously identified. The purpose of the current study was to fill this void by investigating the effect of physical support (through handrail hold) and/or somatosensory input (through light touch contact with a handrail) on energy cost and accompanying changes in both step parameters and neuromuscular activity. Elucidating these aspects may provide useful insights into gait recovery post stroke.Fifteen stroke survivors participated in this study. Participants walked on a treadmill under three conditions: no handrail contact, light touch of the handrail, and firm handrail hold. During the trials we recorded oxygen consumption, center of pressure profiles, and bilateral activation of eight lower limb muscles. Effects of the three conditions on energy cost, step parameters and neuromuscular activation were compared statistically using conventional ANOVAs with repeated measures. In order to examine to which extent energy cost and step parameters/muscle activity are associated, we further employed a partial least squares regression analysis.Handrail hold resulted in a significant reduction in energy cost, whereas light touch contact did not. With handrail hold subjects took longer steps with smaller step width and improved step length symmetry, whereas light touch contact only resulted in a small but significant decrease in step width. The EMG analysis indicated a global drop in muscle activity, accompanied by an increased constancy in the timing of this activity, and a decreased co-activation with handrail hold, but not with light touch. The regression analysis revealed that increased stride time and length, improved step length symmetry, and decreased muscle activity were closely associated with the decreased energy cost during handrail hold.Handrail hold, but not light touch, altered step parameters and was accompanied by a global reduction in muscle activity, with improved timing constancy. This suggests that the use of a handrail allows for a more economic step pattern that requires less muscular activation without resulting in substantial neuromuscular re-organization. Handrail use may thus have beneficial effects on gait economy after stroke, which cannot be accomplished through enhanced somatosensory input alone.
Journal of NeuroEngi... arrow_drop_down Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Journal of NeuroEngineering and RehabilitationArticle . 2015Journal of NeuroEngineering and RehabilitationArticle . 2015License: CC BYData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12984-015-0051-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of NeuroEngi... arrow_drop_down Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Journal of NeuroEngineering and RehabilitationArticle . 2015Journal of NeuroEngineering and RehabilitationArticle . 2015License: CC BYData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12984-015-0051-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object , Article 2010 NetherlandsPublisher:IOS Press Houdijk, J.H.P.; Hoeve, N. ter; Nooijen, C.F.J.; Reintjes, D.; Tolsma, M.; Lamoth, C.J.C.;Purpose: To study the energy expenditure needed for balance control of stroke patients during upright standing, and to determine the relationship between energy expenditure and measures of balance control and muscle activity. Methods: Ten stroke patients and twelve healthy controls performed four upright standing tasks; one without and three with balance perturbations. Energy expenditure was assessed using a pulmonary gas measurement system. Conventional and dynamic balance measures were calculated from center of pressure time series, obtained with a force plate. Muscle activity of the ankle plantar flexors and dorsal flexors was measured using electromyography. Results: On average, energy expenditure during standing was 125% higher in stroke patients. Challenging balance caused a significant increase in energy expenditure (21-52%) for both groups, but no significant interaction (group x condition) was found. Balance control was impaired and muscle activity was higher in stroke patients in all standing conditions. Significant, though moderate to low, correlations were found between energy expenditure and measures of balance control and muscle activity. Conclusion: This study shows that the increased effort for maintaining balance can have a clinically relevant effect on energy expenditure of stroke patients. Besides balance control, other factors responsible for the increased energy expenditure during upright standing in stroke patients should be explored.
DSpace at VU arrow_drop_down https://doi.org/10.3233/978-1-...Part of book or chapter of book . 2010 . Peer-reviewedData sources: CrossrefErasmus University Rotterdam - Research Information PortalConference object . 2010University of Groningen Research PortalPart of book or chapter of book . 2010Data sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3233/978-1-60750-080-3-178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert DSpace at VU arrow_drop_down https://doi.org/10.3233/978-1-...Part of book or chapter of book . 2010 . Peer-reviewedData sources: CrossrefErasmus University Rotterdam - Research Information PortalConference object . 2010University of Groningen Research PortalPart of book or chapter of book . 2010Data sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3233/978-1-60750-080-3-178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV van der Lucas Woude; Peter J. Beek; Peter J. Beek; Han Houdijk; Trienke IJmker; Claudine J. C. Lamoth; S. Noten;The aim of this study was to examine whether impaired balance control is partly responsible for the increased energy cost of walking in persons with a lower limb amputation (LLA). Previous studies used external lateral stabilization to evaluate the energy cost for balance control; this caused a decrease in energy cost, with concomitant decreases in mean and variability of step width. Using a similar set-up, we expected larger decreases for LLA than able-bodied controls. Fifteen transtibial amputees (TT), 12 transfemoral amputees (TF), and 15 able-bodied controls (CO) walked with and without external lateral stabilization provided via spring like cords attached to the waist. Effects of this manipulation on energy cost, step parameters, and pelvic motion were evaluated between groups. TT (-5%) and CO (-3%) showed on average a small reduction in energy cost when walking with stabilization, whereas TF exhibited an increase in energy cost (+6.5%) The difference in the effect of stabilization was only significant between TT and TF. Step width, step width variability, and medio-lateral pelvic displacement decreased significantly with stabilization in all groups, especially in TT. Contrary to expectations, external lateral stabilization did not result in a larger decrease in the energy cost of walking for LLA compared to able-bodied controls, suggesting that balance control is not a major factor in the increased cost of walking in LLA. Alternatively, the increased energy cost with stabilization for TF suggests that restraining (medio-lateral) pelvic motion impeded necessary movement adaptations in LLA, and thus negated the postulated beneficial effects of stabilization on the energy cost of walking.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gaitpost.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gaitpost.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 NetherlandsPublisher:Springer Science and Business Media LLC IJmker, T.; Lamoth, C.J.C.; Houdijk, J.H.P.; Tolsma, M.; van der Woude, L.H.V.; Daffertshofer, A.; Beek, P.J.;pmid: 26298647
pmc: PMC4546819
Holding a handrail or using a cane may decrease the energy cost of walking in stroke survivors. However, the factors underlying this decrease have not yet been previously identified. The purpose of the current study was to fill this void by investigating the effect of physical support (through handrail hold) and/or somatosensory input (through light touch contact with a handrail) on energy cost and accompanying changes in both step parameters and neuromuscular activity. Elucidating these aspects may provide useful insights into gait recovery post stroke.Fifteen stroke survivors participated in this study. Participants walked on a treadmill under three conditions: no handrail contact, light touch of the handrail, and firm handrail hold. During the trials we recorded oxygen consumption, center of pressure profiles, and bilateral activation of eight lower limb muscles. Effects of the three conditions on energy cost, step parameters and neuromuscular activation were compared statistically using conventional ANOVAs with repeated measures. In order to examine to which extent energy cost and step parameters/muscle activity are associated, we further employed a partial least squares regression analysis.Handrail hold resulted in a significant reduction in energy cost, whereas light touch contact did not. With handrail hold subjects took longer steps with smaller step width and improved step length symmetry, whereas light touch contact only resulted in a small but significant decrease in step width. The EMG analysis indicated a global drop in muscle activity, accompanied by an increased constancy in the timing of this activity, and a decreased co-activation with handrail hold, but not with light touch. The regression analysis revealed that increased stride time and length, improved step length symmetry, and decreased muscle activity were closely associated with the decreased energy cost during handrail hold.Handrail hold, but not light touch, altered step parameters and was accompanied by a global reduction in muscle activity, with improved timing constancy. This suggests that the use of a handrail allows for a more economic step pattern that requires less muscular activation without resulting in substantial neuromuscular re-organization. Handrail use may thus have beneficial effects on gait economy after stroke, which cannot be accomplished through enhanced somatosensory input alone.
Journal of NeuroEngi... arrow_drop_down Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Journal of NeuroEngineering and RehabilitationArticle . 2015Journal of NeuroEngineering and RehabilitationArticle . 2015License: CC BYData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12984-015-0051-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of NeuroEngi... arrow_drop_down Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Journal of NeuroEngineering and RehabilitationArticle . 2015Journal of NeuroEngineering and RehabilitationArticle . 2015License: CC BYData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12984-015-0051-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object , Article 2010 NetherlandsPublisher:IOS Press Houdijk, J.H.P.; Hoeve, N. ter; Nooijen, C.F.J.; Reintjes, D.; Tolsma, M.; Lamoth, C.J.C.;Purpose: To study the energy expenditure needed for balance control of stroke patients during upright standing, and to determine the relationship between energy expenditure and measures of balance control and muscle activity. Methods: Ten stroke patients and twelve healthy controls performed four upright standing tasks; one without and three with balance perturbations. Energy expenditure was assessed using a pulmonary gas measurement system. Conventional and dynamic balance measures were calculated from center of pressure time series, obtained with a force plate. Muscle activity of the ankle plantar flexors and dorsal flexors was measured using electromyography. Results: On average, energy expenditure during standing was 125% higher in stroke patients. Challenging balance caused a significant increase in energy expenditure (21-52%) for both groups, but no significant interaction (group x condition) was found. Balance control was impaired and muscle activity was higher in stroke patients in all standing conditions. Significant, though moderate to low, correlations were found between energy expenditure and measures of balance control and muscle activity. Conclusion: This study shows that the increased effort for maintaining balance can have a clinically relevant effect on energy expenditure of stroke patients. Besides balance control, other factors responsible for the increased energy expenditure during upright standing in stroke patients should be explored.
DSpace at VU arrow_drop_down https://doi.org/10.3233/978-1-...Part of book or chapter of book . 2010 . Peer-reviewedData sources: CrossrefErasmus University Rotterdam - Research Information PortalConference object . 2010University of Groningen Research PortalPart of book or chapter of book . 2010Data sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3233/978-1-60750-080-3-178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert DSpace at VU arrow_drop_down https://doi.org/10.3233/978-1-...Part of book or chapter of book . 2010 . Peer-reviewedData sources: CrossrefErasmus University Rotterdam - Research Information PortalConference object . 2010University of Groningen Research PortalPart of book or chapter of book . 2010Data sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3233/978-1-60750-080-3-178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu