- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 23 May 2023 Germany, ItalyPublisher:MDPI AG Felix Lippkau; David Franzmann; Thushara Addanki; Patrick Buchenberg; Heidi Heinrichs; Philipp Kuhn; Thomas Hamacher; Markus Blesl;This study investigates the global allocation of hydrogen and synfuels in order to achieve the well below 2 °C, preferably 1.5 °C target set in the Paris Agreement. For this purpose, TIMES Integrated Assessment Model (TIAM), a global energy system model is used. In order to investigate global hydrogen and synfuel flows, cost potential curves are aggregated and implemented into TIAM, as well as demand technologies for the end use sectors. Furthermore, hydrogen and synfuel trades are established using liquid hydrogen transport (LH2), and both new and existing technologies for synfuels are implemented. To represent a wide range of possible future events, four different scenarios are considered with different characteristics of climate and security of supply policies. The results show that in the case of climate policy, the renewable energies need tremendous expansion. The final energy consumption is shifting towards the direct use of electricity, while certain demand technologies (e.g., aviation and international shipping) require hydrogen and synfuels for full decarbonization. Due to different security of supply policies, the global allocation of hydrogen and synfuel production and exports is shifting, while the 1.5 °C target remains feasible in the different climate policy scenarios. Considering climate policy, Middle East Asia is the preferred region for hydrogen export. For synfuel production, several regions are competitive, including Middle East Asia, Mexico, Africa, South America and Australia. In the case of security of supply policies, Middle East Asia is sharing the export volume with Africa, while only minor changes can be seen in the synfuel supply.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3277/pdfData sources: Multidisciplinary Digital Publishing InstituteOPUS - Publication Server of the University of StuttgartArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Online Publikationen der Universität StuttgartArticle . 2023License: CC BYData sources: Online Publikationen der Universität StuttgartPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3277/pdfData sources: Multidisciplinary Digital Publishing InstituteOPUS - Publication Server of the University of StuttgartArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Online Publikationen der Universität StuttgartArticle . 2023License: CC BYData sources: Online Publikationen der Universität StuttgartPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 GermanyPublisher:Elsevier BV Funded by:EC | MATERIALIZEEC| MATERIALIZEAuthors: Franzmann, D.; Heinrichs, H.; Stolten, D.;Renewable energy 250, 123199 - (2025). doi:10.1016/j.renene.2025.123199 Published by Elsevier Science, Amsterdam [u.a.]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2025.123199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2025.123199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 23 May 2023 Germany, ItalyPublisher:MDPI AG Felix Lippkau; David Franzmann; Thushara Addanki; Patrick Buchenberg; Heidi Heinrichs; Philipp Kuhn; Thomas Hamacher; Markus Blesl;This study investigates the global allocation of hydrogen and synfuels in order to achieve the well below 2 °C, preferably 1.5 °C target set in the Paris Agreement. For this purpose, TIMES Integrated Assessment Model (TIAM), a global energy system model is used. In order to investigate global hydrogen and synfuel flows, cost potential curves are aggregated and implemented into TIAM, as well as demand technologies for the end use sectors. Furthermore, hydrogen and synfuel trades are established using liquid hydrogen transport (LH2), and both new and existing technologies for synfuels are implemented. To represent a wide range of possible future events, four different scenarios are considered with different characteristics of climate and security of supply policies. The results show that in the case of climate policy, the renewable energies need tremendous expansion. The final energy consumption is shifting towards the direct use of electricity, while certain demand technologies (e.g., aviation and international shipping) require hydrogen and synfuels for full decarbonization. Due to different security of supply policies, the global allocation of hydrogen and synfuel production and exports is shifting, while the 1.5 °C target remains feasible in the different climate policy scenarios. Considering climate policy, Middle East Asia is the preferred region for hydrogen export. For synfuel production, several regions are competitive, including Middle East Asia, Mexico, Africa, South America and Australia. In the case of security of supply policies, Middle East Asia is sharing the export volume with Africa, while only minor changes can be seen in the synfuel supply.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3277/pdfData sources: Multidisciplinary Digital Publishing InstituteOPUS - Publication Server of the University of StuttgartArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Online Publikationen der Universität StuttgartArticle . 2023License: CC BYData sources: Online Publikationen der Universität StuttgartPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3277/pdfData sources: Multidisciplinary Digital Publishing InstituteOPUS - Publication Server of the University of StuttgartArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Online Publikationen der Universität StuttgartArticle . 2023License: CC BYData sources: Online Publikationen der Universität StuttgartPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 GermanyPublisher:Elsevier BV Funded by:EC | MATERIALIZEEC| MATERIALIZEAuthors: Franzmann, D.; Heinrichs, H.; Stolten, D.;Renewable energy 250, 123199 - (2025). doi:10.1016/j.renene.2025.123199 Published by Elsevier Science, Amsterdam [u.a.]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2025.123199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2025.123199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu