- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Giuseppina Luciani; Giovanna Ruoppolo; Gianluca Landi; Valentina Gargiulo; Michela Alfè; Almerinda Di Benedetto;Glycerol is the main by-product of biodiesel production; its upgrading to more valuable products is a demanding issue. Hydrogenolysis to 1,2-propanediol is one of the most interesting processes among the possible upgrading routes. In this study, we propose novel copper/zirconia catalysts prepared by advanced preparation methods, including copper deposition via metal–organic framework (MOF) and support preparation via the sol–gel route. The catalysts were characterized by N2 physisorption, X-ray diffraction, Scanning Electron Microscopy, H2-TPR and NH3-TPD analyses and tested in a commercial batch reactor. The catalyst prepared by copper deposition via MOF decomposition onto commercial zirconia showed the best catalytic performance, reaching 75% yield. The improved catalytic performance was assigned to a proper combination of redox and acid properties. In particular, a non-negligible fraction of cuprous oxide and of weak acid sites seems fundamental to preferentially activate the selective pathway. In particular, these features avoid the overhydrogenolysis of 1,2-propanediol to 1-propanol and enhance glycerol dehydration to hydroxyacetone and the successive hydrogenation of hydroxyacetone to 1,2-propanediol.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12010072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12010072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Valentina Gargiulo; Michela Alfe; Giovanna Ruoppolo; Francesco Cammarota; Cesare Oliviero Rossi; Valeria Loise; Michele Porto; Pietro Calandra; Mikolaj Pochylski; Jacek Gapinski; Paolino Caputo;Colloids and Surface... arrow_drop_down Colloids and Surfaces A Physicochemical and Engineering AspectsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.colsurfa.2023.132199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Colloids and Surface... arrow_drop_down Colloids and Surfaces A Physicochemical and Engineering AspectsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.colsurfa.2023.132199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:American Chemical Society (ACS) Paola Giudicianni; Valentina Gargiulo; Corinna Maria Grottola; Michela Alfè; Ana Isabel Ferreiro; Miguel Abreu Almeida Mendes; Massimo Fagnano; Raffaele Ragucci;One of the main drawbacks of using biomass as pyrolysis feedstock consists of the huge variability of the different biomass resources which undermines the viability of downstream processes. Inherent inorganic elements greatly contribute to enhance the compositional variability issues due to their catalytic effect (especially alkali and alkaline earth metals (AAEMs)) and the technical problems arising due to their presence. Due to the different pretreatments adopted in the experimental investigations as well as the different reactor configurations and experimental conditions, some mechanisms involving interactions between these elements and the biomass organic fraction during pyrolysis are still debated. This is the reason why predicting the results of these interactions by adapting the existing kinetic models of pyrolysis is still challenging. In this work, the most prominent experimental works of the last 10 years dealing with the catalytic effects of biomass inherent metals on the pyrolysis process are reviewed. Reaction pathways, products distributions and characteristics, and impacts on the products utilization are discussed with a focus on AAEMs and on potential toxic metallic elements in hyperaccumulator plants. The literature findings are discussed in relation to the applied laboratory procedures controlling the concentration of inherent inorganic elements, their capability of preserving the chemical integrity of the main organic components, and the ability of resembling the inherent inorganic elements in the raw biomass. The goal is to reveal possible experimental inconsistencies and to provide a clear scheme of the reaction pathways altered by the presence of inherent inorganics. This analysis paves the way for the examination of the proposed modifications of the existing models aiming at capturing the effect of inorganics on pyrolysis kinetics. Finally, the most relevant shortcomings and bottlenecks in existing experimental and modeling approaches are analyzed and directions for further studies are suggested.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.0c04046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.0c04046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:American Chemical Society (ACS) Stefano Lettieri; Valentina Gargiulo; Michela Alfè; Matteo Amati; Patrick Zeller; Valentin-Adrian Maraloiu; Fabio Borbone; Michele Pavone; Ana B. Muñoz-García; Pasqualino Maddalena;We show that a simple ethanol (EtOH) refluxing treatment at mild temperature (120 °C) allows producing blue-colored and reduced titanium dioxide (TiO2-x) exhibiting improved visible-light (VIS) photocatalytic properties. The treatment causes an increase in the density of Ti(III) species and the appearance of two optical absorption features: a broad absorption band--responsible for the blue coloration--extending from the green region (~2.3 eV) up to the near-infrared and a subgap absorption tail close to the band gap energy. The experimental results combined with a computation of the density of states via hybrid Hartree-Fock density functional support the hypothesis that the EtOH reflux treatment leads to formation of surface and subsurface oxygen (O) vacancies. We also show that the excitation-resolved photoluminescence technique allows a high-contrast detection of a subgap optical excitation band peaked at about 430 nm (~2.9 eV), associated with anatase photoluminescence, whose intensity increases after the EtOH reflux treatment. This result gives a very direct support to the debated hypothesis identifying O vacancy states as the energy levels involved in the radiative transition of anatase TiO2. Improved photocatalytic degradation by the processed TiO2 under VIS illumination is demonstrated, and the possible mechanism involved in the formation of surface O vacancies is discussed. The method outlines a very simple, low-cost, and fast procedure to target the formation of O vacancies in the TiO2 surface region.
CNR ExploRA arrow_drop_down The Journal of Physical Chemistry CArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.9b08993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down The Journal of Physical Chemistry CArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.9b08993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:American Chemical Society (ACS) Funded by:EC | PHOROSOLEC| PHOROSOLValentina Gargiulo; Alicia Gomis-Berenguer; Paola Giudicianni; Conchi O. Ania; Raffaele Ragucci; Michela Alfè;The potentialities in the use of biochars prepared by steam-assisted slow pyrolysis as adsorbents of gases of strategic interest (N2, CO2, and CH4) and their mixtures were explored. The biochars prepared from Populus nigra wood and cellulose fibers exhibited a narrow microporosity, with average pore sizes ranging between 0.55 and 0.6 nm. The micropore volume increased with the pyrolysis temperature, allowing CO2 and CH4 uptakes at room temperature between 1.5 and 2.5 mmol/g and between 0.1 and 0.5 mmol/g, respectively. These values are in line with those from the literature on biomass-derived carbon-based materials, exhibiting much higher porous features than those reported herein. As for the separation of CO2/N2 and CO2/CH4 gas mixtures, data showed that the prepared biochars exhibited good selectivities for CO2 over both N2 and CH4: between ca. 34 and 119 for a CO2/N2 mixture in typical post-combustion conditions (15:85, v/v) and between 14 and 34 for a CO2/CH4 mixture typical of natural gas upgrading (30:70, v/v).
Hyper Article en Lig... arrow_drop_down Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnergy & FuelsArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.8b01058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 75 citations 75 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnergy & FuelsArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.8b01058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Funded by:EC | RE-ROADEC| RE-ROADPaolino Caputo; Pietro Calandra; Valeria Loise; Adolfo Le Pera; Ana-Maria Putz; Abraham A. Abe; Luigi Madeo; Bagdat Teltayev; Maria Laura Luprano; Michela Alfè; Valentina Gargiulo; Giovanna Ruoppolo; Cesare Oliviero Rossi;doi: 10.3390/su14105790
Urban waste management is a hard task: more than 30% of the world’s total production of Municipal Solid Wastes (MSW) is not adequately handled, with landfilling remaining as a common practice. Another source of wastes is the road pavement industry: with a service life of about 10–15 years, asphalts become stiff, susceptible to cracks, and therefore no longer adapted for road paving, so they become wastes. To simultaneously solve these problems, a circular economy-based approach is proposed by the ReScA project, suggesting the use of pyrolysis to treat MSW (or its fractions as Refuse Derived Fuels, RDFs), whose residues (oil and char) can be used as added-value ingredients for the asphalt cycle. Char can be used to prepare better performing and durable asphalts, and oil can be used to regenerate exhaust asphalts, avoiding their landfilling. The proposed approach provides a different and more useful pathway in the end-of-waste (EoW) cycle of urban wastes. This proof of concept is suggested by the following two observations: (i) char is made up by carbonaceous particles highly compatible with the organic nature of bitumens, so its addition can reinforce the overall bitumen structure, increasing its mechanical properties and slowing down the molecular kinetics of its aging process; (ii) oil is rich in hydrocarbons, so it can enrich the poor fraction of the maltene phase in exhaust asphalts. These hypotheses have been proved by testing the residues derived from the pyrolysis of RDFs for the improvement of mechanical characteristics of a representative bitumen sample and its regeneration after aging. The proposed approach is suggested by the physico-chemical study of the materials involved, and aims to show how the chemical knowledge of complex systems, like bituminous materials, can help in solving environmental issues. We hope that this approach will be considered as a model method for the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Giuseppina Luciani; Giovanna Ruoppolo; Gianluca Landi; Valentina Gargiulo; Michela Alfè; Almerinda Di Benedetto;Glycerol is the main by-product of biodiesel production; its upgrading to more valuable products is a demanding issue. Hydrogenolysis to 1,2-propanediol is one of the most interesting processes among the possible upgrading routes. In this study, we propose novel copper/zirconia catalysts prepared by advanced preparation methods, including copper deposition via metal–organic framework (MOF) and support preparation via the sol–gel route. The catalysts were characterized by N2 physisorption, X-ray diffraction, Scanning Electron Microscopy, H2-TPR and NH3-TPD analyses and tested in a commercial batch reactor. The catalyst prepared by copper deposition via MOF decomposition onto commercial zirconia showed the best catalytic performance, reaching 75% yield. The improved catalytic performance was assigned to a proper combination of redox and acid properties. In particular, a non-negligible fraction of cuprous oxide and of weak acid sites seems fundamental to preferentially activate the selective pathway. In particular, these features avoid the overhydrogenolysis of 1,2-propanediol to 1-propanol and enhance glycerol dehydration to hydroxyacetone and the successive hydrogenation of hydroxyacetone to 1,2-propanediol.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12010072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12010072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Valentina Gargiulo; Michela Alfe; Giovanna Ruoppolo; Francesco Cammarota; Cesare Oliviero Rossi; Valeria Loise; Michele Porto; Pietro Calandra; Mikolaj Pochylski; Jacek Gapinski; Paolino Caputo;Colloids and Surface... arrow_drop_down Colloids and Surfaces A Physicochemical and Engineering AspectsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.colsurfa.2023.132199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Colloids and Surface... arrow_drop_down Colloids and Surfaces A Physicochemical and Engineering AspectsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.colsurfa.2023.132199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:American Chemical Society (ACS) Paola Giudicianni; Valentina Gargiulo; Corinna Maria Grottola; Michela Alfè; Ana Isabel Ferreiro; Miguel Abreu Almeida Mendes; Massimo Fagnano; Raffaele Ragucci;One of the main drawbacks of using biomass as pyrolysis feedstock consists of the huge variability of the different biomass resources which undermines the viability of downstream processes. Inherent inorganic elements greatly contribute to enhance the compositional variability issues due to their catalytic effect (especially alkali and alkaline earth metals (AAEMs)) and the technical problems arising due to their presence. Due to the different pretreatments adopted in the experimental investigations as well as the different reactor configurations and experimental conditions, some mechanisms involving interactions between these elements and the biomass organic fraction during pyrolysis are still debated. This is the reason why predicting the results of these interactions by adapting the existing kinetic models of pyrolysis is still challenging. In this work, the most prominent experimental works of the last 10 years dealing with the catalytic effects of biomass inherent metals on the pyrolysis process are reviewed. Reaction pathways, products distributions and characteristics, and impacts on the products utilization are discussed with a focus on AAEMs and on potential toxic metallic elements in hyperaccumulator plants. The literature findings are discussed in relation to the applied laboratory procedures controlling the concentration of inherent inorganic elements, their capability of preserving the chemical integrity of the main organic components, and the ability of resembling the inherent inorganic elements in the raw biomass. The goal is to reveal possible experimental inconsistencies and to provide a clear scheme of the reaction pathways altered by the presence of inherent inorganics. This analysis paves the way for the examination of the proposed modifications of the existing models aiming at capturing the effect of inorganics on pyrolysis kinetics. Finally, the most relevant shortcomings and bottlenecks in existing experimental and modeling approaches are analyzed and directions for further studies are suggested.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.0c04046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.0c04046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:American Chemical Society (ACS) Stefano Lettieri; Valentina Gargiulo; Michela Alfè; Matteo Amati; Patrick Zeller; Valentin-Adrian Maraloiu; Fabio Borbone; Michele Pavone; Ana B. Muñoz-García; Pasqualino Maddalena;We show that a simple ethanol (EtOH) refluxing treatment at mild temperature (120 °C) allows producing blue-colored and reduced titanium dioxide (TiO2-x) exhibiting improved visible-light (VIS) photocatalytic properties. The treatment causes an increase in the density of Ti(III) species and the appearance of two optical absorption features: a broad absorption band--responsible for the blue coloration--extending from the green region (~2.3 eV) up to the near-infrared and a subgap absorption tail close to the band gap energy. The experimental results combined with a computation of the density of states via hybrid Hartree-Fock density functional support the hypothesis that the EtOH reflux treatment leads to formation of surface and subsurface oxygen (O) vacancies. We also show that the excitation-resolved photoluminescence technique allows a high-contrast detection of a subgap optical excitation band peaked at about 430 nm (~2.9 eV), associated with anatase photoluminescence, whose intensity increases after the EtOH reflux treatment. This result gives a very direct support to the debated hypothesis identifying O vacancy states as the energy levels involved in the radiative transition of anatase TiO2. Improved photocatalytic degradation by the processed TiO2 under VIS illumination is demonstrated, and the possible mechanism involved in the formation of surface O vacancies is discussed. The method outlines a very simple, low-cost, and fast procedure to target the formation of O vacancies in the TiO2 surface region.
CNR ExploRA arrow_drop_down The Journal of Physical Chemistry CArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.9b08993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down The Journal of Physical Chemistry CArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.9b08993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:American Chemical Society (ACS) Funded by:EC | PHOROSOLEC| PHOROSOLValentina Gargiulo; Alicia Gomis-Berenguer; Paola Giudicianni; Conchi O. Ania; Raffaele Ragucci; Michela Alfè;The potentialities in the use of biochars prepared by steam-assisted slow pyrolysis as adsorbents of gases of strategic interest (N2, CO2, and CH4) and their mixtures were explored. The biochars prepared from Populus nigra wood and cellulose fibers exhibited a narrow microporosity, with average pore sizes ranging between 0.55 and 0.6 nm. The micropore volume increased with the pyrolysis temperature, allowing CO2 and CH4 uptakes at room temperature between 1.5 and 2.5 mmol/g and between 0.1 and 0.5 mmol/g, respectively. These values are in line with those from the literature on biomass-derived carbon-based materials, exhibiting much higher porous features than those reported herein. As for the separation of CO2/N2 and CO2/CH4 gas mixtures, data showed that the prepared biochars exhibited good selectivities for CO2 over both N2 and CH4: between ca. 34 and 119 for a CO2/N2 mixture in typical post-combustion conditions (15:85, v/v) and between 14 and 34 for a CO2/CH4 mixture typical of natural gas upgrading (30:70, v/v).
Hyper Article en Lig... arrow_drop_down Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnergy & FuelsArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.8b01058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 75 citations 75 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnergy & FuelsArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.8b01058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Funded by:EC | RE-ROADEC| RE-ROADPaolino Caputo; Pietro Calandra; Valeria Loise; Adolfo Le Pera; Ana-Maria Putz; Abraham A. Abe; Luigi Madeo; Bagdat Teltayev; Maria Laura Luprano; Michela Alfè; Valentina Gargiulo; Giovanna Ruoppolo; Cesare Oliviero Rossi;doi: 10.3390/su14105790
Urban waste management is a hard task: more than 30% of the world’s total production of Municipal Solid Wastes (MSW) is not adequately handled, with landfilling remaining as a common practice. Another source of wastes is the road pavement industry: with a service life of about 10–15 years, asphalts become stiff, susceptible to cracks, and therefore no longer adapted for road paving, so they become wastes. To simultaneously solve these problems, a circular economy-based approach is proposed by the ReScA project, suggesting the use of pyrolysis to treat MSW (or its fractions as Refuse Derived Fuels, RDFs), whose residues (oil and char) can be used as added-value ingredients for the asphalt cycle. Char can be used to prepare better performing and durable asphalts, and oil can be used to regenerate exhaust asphalts, avoiding their landfilling. The proposed approach provides a different and more useful pathway in the end-of-waste (EoW) cycle of urban wastes. This proof of concept is suggested by the following two observations: (i) char is made up by carbonaceous particles highly compatible with the organic nature of bitumens, so its addition can reinforce the overall bitumen structure, increasing its mechanical properties and slowing down the molecular kinetics of its aging process; (ii) oil is rich in hydrocarbons, so it can enrich the poor fraction of the maltene phase in exhaust asphalts. These hypotheses have been proved by testing the residues derived from the pyrolysis of RDFs for the improvement of mechanical characteristics of a representative bitumen sample and its regeneration after aging. The proposed approach is suggested by the physico-chemical study of the materials involved, and aims to show how the chemical knowledge of complex systems, like bituminous materials, can help in solving environmental issues. We hope that this approach will be considered as a model method for the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu