- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Funded by:UKRI | Project RiseUKRI| Project RiseRonja Wollnik; Malgorzata Borchers; Ruben Seibert; Susanne Abel; Pierre Herrmann; Peter Elsasser; Jakob Hildebrandt; Kathleen Meisel; Pia Hofmann; Kai Radtke; Marco Selig; Stanislav Kazmin; Nora Szarka; Daniela Thrän;Abstract Bio-based carbon dioxide removal (CDR) encompasses a wide range of (i) natural sink enhancement concepts in agriculture and on organic soils including peatlands, and in forestry, (ii) bio-based building materials, and (iii) bioenergy production with CO2 capture and storage (BECCS), which are also expected to contribute to the German climate neutrality target. While the concepts vary in CO2 removal dynamics, long-term CO2 removal potential, in specific costs and many other factors, a common database is crucial to compare and discuss the different options. To cover this gap, we provide standardised factsheets with many aspects from economics, resource base and environmental impacts to social and political implications. When comparing those concepts, we find different dynamics of their development until 2045: For CO2 removal rates from the atmosphere, natural sink enhancement concepts are characterised by gradually increasing rates, followed by a saturation and potentially a decrease after few decades; forest-related measures ramp up slowly and for construction projects and bioenergy plants, annually constant removal rates are assumed during operation which drop to zero afterwards. The natural sink enhancement concepts and some long-lived materials could be deployed immediately, whilst BECCS and ramping up construction materials still face legal and political barriers. The expenses for removing 1 t CO2 from the atmosphere were found to be between 8 and 520 € t CO2-1. All concepts investigated could theoretically be scaled up to remove over 1 million tons of CO2 during 25 years, suggesting they can become part of a portfolio of CDR measures.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3452150/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3452150/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Funded by:UKRI | Project RiseUKRI| Project RiseRonja Wollnik; Malgorzata Borchers; Ruben Seibert; Susanne Abel; Pierre Herrmann; Peter Elsasser; Jakob Hildebrandt; Kathleen Meisel; Pia Hofmann; Kai Radtke; Marco Selig; Stanislav Kazmin; Nora Szarka; Daniela Thrän;Abstract Bio-based carbon dioxide removal (CDR) encompasses a wide range of (i) natural sink enhancement concepts in agriculture and on organic soils including peatlands, and in forestry, (ii) bio-based building materials, and (iii) bioenergy production with CO2 capture and storage (BECCS), which are also expected to contribute to the German climate neutrality target. While the concepts vary in CO2 removal dynamics, long-term CO2 removal potential, in specific costs and many other factors, a common database is crucial to compare and discuss the different options. To cover this gap, we provide standardised factsheets with many aspects from economics, resource base and environmental impacts to social and political implications. When comparing those concepts, we find different dynamics of their development until 2045: For CO2 removal rates from the atmosphere, natural sink enhancement concepts are characterised by gradually increasing rates, followed by a saturation and potentially a decrease after few decades; forest-related measures ramp up slowly and for construction projects and bioenergy plants, annually constant removal rates are assumed during operation which drop to zero afterwards. The natural sink enhancement concepts and some long-lived materials could be deployed immediately, whilst BECCS and ramping up construction materials still face legal and political barriers. The expenses for removing 1 t CO2 from the atmosphere were found to be between 8 and 520 € t CO2-1. All concepts investigated could theoretically be scaled up to remove over 1 million tons of CO2 during 25 years, suggesting they can become part of a portfolio of CDR measures.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3452150/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3452150/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 GermanyPublisher:MDPI AG Funded by:EC | STAR-ProBioEC| STAR-ProBioStefan Majer; Simone Wurster; David Moosmann; Luana Ladu; Beike Sumfleth; Daniela Thrän;The concept of the bio-based economy has gained increasing attention and importance in recent years. It is seen as a chance to reduce the dependency on fossil resources while securing a sustainable supply of energy, water, and raw materials, and furthermore preserving soils, climate and the environment. The intended transformation is characterized by economic, environmental and social challenges and opportunities, and it is understood as a social transition process towards a sustainable, bio-based and nature-oriented economy. This process requires general mechanisms to establish and monitor safeguards for a sustainable development of the bio-based economy on a national and EU level. Sustainability certification and standardisation of bio-based products can help to manage biogenic resources and their derived products in a sustainable manner. In this paper, we have analysed the current status of sustainability certification and standardisation in the bio-based economy by conducting comprehensive desktop research, which was complemented by a series of expert interviews. The analysis revealed an impressive amount of existing certification frameworks, criteria, indicators and applicable standards. However, relevant gaps relating to existing criteria sets, the practical implementation of criteria in certification processes, the legislative framework, end-of-life processes, as well as necessary standardisation activities, were identified which require further research and development to improve sustainability certification and standardisation for a growing bio-based economy.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10072455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 10 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10072455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 GermanyPublisher:MDPI AG Funded by:EC | STAR-ProBioEC| STAR-ProBioStefan Majer; Simone Wurster; David Moosmann; Luana Ladu; Beike Sumfleth; Daniela Thrän;The concept of the bio-based economy has gained increasing attention and importance in recent years. It is seen as a chance to reduce the dependency on fossil resources while securing a sustainable supply of energy, water, and raw materials, and furthermore preserving soils, climate and the environment. The intended transformation is characterized by economic, environmental and social challenges and opportunities, and it is understood as a social transition process towards a sustainable, bio-based and nature-oriented economy. This process requires general mechanisms to establish and monitor safeguards for a sustainable development of the bio-based economy on a national and EU level. Sustainability certification and standardisation of bio-based products can help to manage biogenic resources and their derived products in a sustainable manner. In this paper, we have analysed the current status of sustainability certification and standardisation in the bio-based economy by conducting comprehensive desktop research, which was complemented by a series of expert interviews. The analysis revealed an impressive amount of existing certification frameworks, criteria, indicators and applicable standards. However, relevant gaps relating to existing criteria sets, the practical implementation of criteria in certification processes, the legislative framework, end-of-life processes, as well as necessary standardisation activities, were identified which require further research and development to improve sustainability certification and standardisation for a growing bio-based economy.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10072455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 10 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10072455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Josephin Helka; Julia Ostrowski; Mohammad Abdel-Razek; Peter Hawighorst; Jan Henke; Stefan Majer; Daniela Thrän;doi: 10.3390/su12198273
Monitoring the potential impacts of the growing Bioeconomy (BE) is a crucial precondition for the development of viable and sustainable strategies. Potential environmental consequences from resource production for the German Bioeconomy can be assessed with the concept of environmental footprint modelling. Furthermore, remote sensing and sustainability certification are tools that can support risk assessment and mitigation i.e., regarding land use (change), biodiversity, carbon stocks, and water consumption. Thus, they can complement the results of footprint models and produce assessment results with a much higher resolution. Among other things, this can enable the development of strategies for more sustainable production practices in high-risk areas and avoid potential bans of biomass imports from entire countries/regions. The conducted case study on palm oil in this paper shows intersections between indicators used in sustainability certification systems and in footprint modelling considering processes on plantation and mill levels. Local best practices for the sustainable production of biomass are identified through a literature review and are extended by a survey, which evaluates the feasibility and conditions of implementing the selected practices on plantations. The conceptual approach outlined in this paper can be seen as a first step towards an integrated sustainability risk analysis of processes and products used within the BE that might be further developed from this starting point. It takes into account footprint modelling data, the use of sustainability certification systems, and data and results from remote sensing analyses. This will enable low-risk producers of renewable resources, who are located in regions generally flagged as high-risk when using environmental footprint modelling, not to be excluded from market activities but to set best practice examples that can then be expanded into these regions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/19/8273/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/19/8273/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Josephin Helka; Julia Ostrowski; Mohammad Abdel-Razek; Peter Hawighorst; Jan Henke; Stefan Majer; Daniela Thrän;doi: 10.3390/su12198273
Monitoring the potential impacts of the growing Bioeconomy (BE) is a crucial precondition for the development of viable and sustainable strategies. Potential environmental consequences from resource production for the German Bioeconomy can be assessed with the concept of environmental footprint modelling. Furthermore, remote sensing and sustainability certification are tools that can support risk assessment and mitigation i.e., regarding land use (change), biodiversity, carbon stocks, and water consumption. Thus, they can complement the results of footprint models and produce assessment results with a much higher resolution. Among other things, this can enable the development of strategies for more sustainable production practices in high-risk areas and avoid potential bans of biomass imports from entire countries/regions. The conducted case study on palm oil in this paper shows intersections between indicators used in sustainability certification systems and in footprint modelling considering processes on plantation and mill levels. Local best practices for the sustainable production of biomass are identified through a literature review and are extended by a survey, which evaluates the feasibility and conditions of implementing the selected practices on plantations. The conceptual approach outlined in this paper can be seen as a first step towards an integrated sustainability risk analysis of processes and products used within the BE that might be further developed from this starting point. It takes into account footprint modelling data, the use of sustainability certification systems, and data and results from remote sensing analyses. This will enable low-risk producers of renewable resources, who are located in regions generally flagged as high-risk when using environmental footprint modelling, not to be excluded from market activities but to set best practice examples that can then be expanded into these regions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/19/8273/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/19/8273/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Daniela Thrän; Stefanie B. Seitz; André Brosowski; Marco Klemm; Eric Billig; Janet Witt;AbstractBioenergy carriers are used in different energy sectors. While the bioenergy supply from energy crops is limited, there is still reasonable unused potential from residues and waste. Improved qualities are necessary with regard to energy density, storability, energy content, flexible application, and related emissions. Especially solid and gaseous biofuels can be generated with reasonable effort and are suitable for utilizing the available waste and residual streams. These advanced bioenergy carriers can support the energy transition significantly, but need support for market introduction.
Chemie Ingenieur Tec... arrow_drop_down Chemie Ingenieur TechnikArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.201700083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Chemie Ingenieur Tec... arrow_drop_down Chemie Ingenieur TechnikArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.201700083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Daniela Thrän; Stefanie B. Seitz; André Brosowski; Marco Klemm; Eric Billig; Janet Witt;AbstractBioenergy carriers are used in different energy sectors. While the bioenergy supply from energy crops is limited, there is still reasonable unused potential from residues and waste. Improved qualities are necessary with regard to energy density, storability, energy content, flexible application, and related emissions. Especially solid and gaseous biofuels can be generated with reasonable effort and are suitable for utilizing the available waste and residual streams. These advanced bioenergy carriers can support the energy transition significantly, but need support for market introduction.
Chemie Ingenieur Tec... arrow_drop_down Chemie Ingenieur TechnikArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.201700083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Chemie Ingenieur Tec... arrow_drop_down Chemie Ingenieur TechnikArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.201700083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:SAGE Publications Authors: Daniela Thrän; Daniel Reißmann; Alberto Bezama;pmid: 30028278
A considerable amount of wet biogenic residues and waste has no resource-efficient use in several European countries yet. Hydrothermal processes (HTP) seem to be promising for treating such biomass as they best work with substrates with 70% to 90% water content. However, thus far the suitability of HTP for this purpose has not been sufficiently evaluated, for which this work aims to identify suitable multi-criteria analysis (MCA) methods that can be used to identify promising ways for the hydrothermal treatment of wet bio-waste. A review on 31 recent MCA studies in bio-waste management was conducted with the aim of comparing them to methodological requirements for evaluating HTP. Furthermore, an MCA approach for HTP based on the review findings is proposed. Results show that no observed MCA method is directly transferable for assessing HTP, for which a customized approach combining the analytical hierarchy process and the technique for order preference by similarity to ideal solutions is proposed and preliminarily validated with literature data. These preliminary calculations indicate that hydrothermal gasification seems most promising under consideration of multiple criteria using the available average and exemplary data. However, needless to say there is still a long way to go to obtain the sufficient adequate data to validate and use the model appropriately, for which further studies are necessary to acquire more reliable data and to assess also future technology developments of HTP.
Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x18785735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x18785735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:SAGE Publications Authors: Daniela Thrän; Daniel Reißmann; Alberto Bezama;pmid: 30028278
A considerable amount of wet biogenic residues and waste has no resource-efficient use in several European countries yet. Hydrothermal processes (HTP) seem to be promising for treating such biomass as they best work with substrates with 70% to 90% water content. However, thus far the suitability of HTP for this purpose has not been sufficiently evaluated, for which this work aims to identify suitable multi-criteria analysis (MCA) methods that can be used to identify promising ways for the hydrothermal treatment of wet bio-waste. A review on 31 recent MCA studies in bio-waste management was conducted with the aim of comparing them to methodological requirements for evaluating HTP. Furthermore, an MCA approach for HTP based on the review findings is proposed. Results show that no observed MCA method is directly transferable for assessing HTP, for which a customized approach combining the analytical hierarchy process and the technique for order preference by similarity to ideal solutions is proposed and preliminarily validated with literature data. These preliminary calculations indicate that hydrothermal gasification seems most promising under consideration of multiple criteria using the available average and exemplary data. However, needless to say there is still a long way to go to obtain the sufficient adequate data to validate and use the model appropriately, for which further studies are necessary to acquire more reliable data and to assess also future technology developments of HTP.
Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x18785735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x18785735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Publisher:MDPI AG Amalia Suryani; Alberto Bezama; Claudia Mair-Bauernfeind; Macben Makenzi; Daniela Thrän;doi: 10.3390/su14095611
The tea industry in Kenya is among the main consumers of firewood for its intensive thermal energy demand. Along with the growing concerns about firewood depletion, tea factories have begun transitioning to alternative fuels to power their boilers. Briquettes made of biomass residues are among the promising solutions; however, they are not yet widely adopted. This study was conducted to identify the factors that motivate the tea factories to use biomass briquettes instead of firewood and the factors hindering such substitution. The substitution potential was assessed, and the drivers and barriers of the substitution were examined using a combination of SWOT (strengths, weaknesses, opportunities, and threats) analysis and a PESTEL (political, economic, social, technological, environmental, and legal) framework. The findings suggest that even though using biomass briquettes is technically possible, it is not economically favorable for tea factories. The SWOT/PESTEL analysis identified 27 factors influencing the substitution. Among the key drivers are the depleting supply of firewood, the availability of biomass residues, and the external support from development organizations to improve the technical capacity in both tea and briquette industries. The study revealed the barriers to substitution include the cost competitiveness, insufficient supply, and varying quality of briquettes, as well as the lack of awareness and knowledge of briquettes.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/9/5611/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/9/5611/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Publisher:MDPI AG Amalia Suryani; Alberto Bezama; Claudia Mair-Bauernfeind; Macben Makenzi; Daniela Thrän;doi: 10.3390/su14095611
The tea industry in Kenya is among the main consumers of firewood for its intensive thermal energy demand. Along with the growing concerns about firewood depletion, tea factories have begun transitioning to alternative fuels to power their boilers. Briquettes made of biomass residues are among the promising solutions; however, they are not yet widely adopted. This study was conducted to identify the factors that motivate the tea factories to use biomass briquettes instead of firewood and the factors hindering such substitution. The substitution potential was assessed, and the drivers and barriers of the substitution were examined using a combination of SWOT (strengths, weaknesses, opportunities, and threats) analysis and a PESTEL (political, economic, social, technological, environmental, and legal) framework. The findings suggest that even though using biomass briquettes is technically possible, it is not economically favorable for tea factories. The SWOT/PESTEL analysis identified 27 factors influencing the substitution. Among the key drivers are the depleting supply of firewood, the availability of biomass residues, and the external support from development organizations to improve the technical capacity in both tea and briquette industries. The study revealed the barriers to substitution include the cost competitiveness, insufficient supply, and varying quality of briquettes, as well as the lack of awareness and knowledge of briquettes.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/9/5611/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/9/5611/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | STAR-ProBioEC| STAR-ProBioAuthors: Beike Sumfleth; Stefan Majer; Daniela Thrän;doi: 10.3390/su12198147
The development of a sustainable biobased economy (BBE) in Europe is associated with several challenges. Amongst others, lessons learned from the development of the biofuel sector and the complex debate around land use change associated with a growing demand for biomass have to be considered when developing BBE policies. In that regard, strategies to identify and verify feedstocks with low potential risks for direct and indirect land use change (iLUC) impacts are of specific importance. Complementing existing efforts to assess iLUC with modelling activities, the European Commission (EC) has proposed a risk-based approach, aiming to differentiate high and low iLUC risk biomass. Amongst others, different additionality measures can be used to produce certified biomass with low iLUC risk. However, a comprehensive overview and analysis of these additionality measures and the challenges related to their integration in an integer verification approach is still missing. Therefore, we analyse European Union (EU) policies dealing with iLUC, iLUC risk assessment studies, certification approaches, and iLUC modelling studies to identify and develop additionality practices potentially applicable in certification and to show how the potential application of the proposed measures could be realised and verified in practice. We identified five potential practices for low iLUC risk biomass production, which are likely to be used by market actors. For each practice, we identified methods for the determination of low iLUC risk feedstock and products. Finally, our review includes recommendations for follow-up activities towards the actual implementation of additionality measures in biomass certification schemes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | STAR-ProBioEC| STAR-ProBioAuthors: Beike Sumfleth; Stefan Majer; Daniela Thrän;doi: 10.3390/su12198147
The development of a sustainable biobased economy (BBE) in Europe is associated with several challenges. Amongst others, lessons learned from the development of the biofuel sector and the complex debate around land use change associated with a growing demand for biomass have to be considered when developing BBE policies. In that regard, strategies to identify and verify feedstocks with low potential risks for direct and indirect land use change (iLUC) impacts are of specific importance. Complementing existing efforts to assess iLUC with modelling activities, the European Commission (EC) has proposed a risk-based approach, aiming to differentiate high and low iLUC risk biomass. Amongst others, different additionality measures can be used to produce certified biomass with low iLUC risk. However, a comprehensive overview and analysis of these additionality measures and the challenges related to their integration in an integer verification approach is still missing. Therefore, we analyse European Union (EU) policies dealing with iLUC, iLUC risk assessment studies, certification approaches, and iLUC modelling studies to identify and develop additionality practices potentially applicable in certification and to show how the potential application of the proposed measures could be realised and verified in practice. We identified five potential practices for low iLUC risk biomass production, which are likely to be used by market actors. For each practice, we identified methods for the determination of low iLUC risk feedstock and products. Finally, our review includes recommendations for follow-up activities towards the actual implementation of additionality measures in biomass certification schemes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Sören Richter; Nora Szarka; Alberto Bezama; Daniela Thrän;doi: 10.3390/su14053045
A future bioeconomy pursues the transformation of the resource base from fossil to renewable materials in an effort to develop a holistic, sustainable production and provision system. While the significance of this change in the German context is not yet entirely explored, scenarios analysing possible pathways could support the understanding of these changes and their systemic implications. Bioeconomy in detail depends on respective framework conditions, such as the availability of biomass or technological research priorities. Thus, for scenario creation, transferable methods for flexible input settings are needed. Addressing this issue, the study identifies relevant bioeconomy scenario drivers. With the theoretical approach of narrative analysis, 92 statements of the German National Bioeconomy Strategy 2020 have been evaluated and 21 international studies in a STEEPLE framework were assessed. For a future German bioeconomy 19 important drivers could be determined and specific aspects of the resource base, production processes and products as well as overarching issues were exploratively characterised on a quantitative and qualitative basis. The developed method demonstrate an approach for a transparent scenario driver identification that is applicable to other strategy papers. The results illustrate a possible future German bioeconomy that is resource- and technology-driven by following a value-based objective, and which is supplied by biogenic residue and side product feedstocks. As such, the bioeconomy scenario drivers can be used as a starting point for future research like scenario development or modelling of a future German bioeconomy.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/3045/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/3045/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Sören Richter; Nora Szarka; Alberto Bezama; Daniela Thrän;doi: 10.3390/su14053045
A future bioeconomy pursues the transformation of the resource base from fossil to renewable materials in an effort to develop a holistic, sustainable production and provision system. While the significance of this change in the German context is not yet entirely explored, scenarios analysing possible pathways could support the understanding of these changes and their systemic implications. Bioeconomy in detail depends on respective framework conditions, such as the availability of biomass or technological research priorities. Thus, for scenario creation, transferable methods for flexible input settings are needed. Addressing this issue, the study identifies relevant bioeconomy scenario drivers. With the theoretical approach of narrative analysis, 92 statements of the German National Bioeconomy Strategy 2020 have been evaluated and 21 international studies in a STEEPLE framework were assessed. For a future German bioeconomy 19 important drivers could be determined and specific aspects of the resource base, production processes and products as well as overarching issues were exploratively characterised on a quantitative and qualitative basis. The developed method demonstrate an approach for a transparent scenario driver identification that is applicable to other strategy papers. The results illustrate a possible future German bioeconomy that is resource- and technology-driven by following a value-based objective, and which is supplied by biogenic residue and side product feedstocks. As such, the bioeconomy scenario drivers can be used as a starting point for future research like scenario development or modelling of a future German bioeconomy.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/3045/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/3045/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019Publisher:ETA-Florence Renewable Energies Authors: Anja Mertens; Daniela Thrän; Alexandra Pfeiffer; André Brosowski;Straw as an energetic and material resource can contribute significantly towards a bioecomony and climate mitigation. Through several studies, available biomass potentials have been determined. However, little attention has been paid towards the mobilisation of the resource. In order to increase the mobilisation of straw, the study of existing purchasing mechanisms in other countries or geographical regions can provide valuable insights. By studying the Danish straw auction model, which was introduced in 2006 and is based on the purchasing mechanism of an online reverse auction (eRA), insights can be gained whether such a system is transferable to other regions. The findings from interviews with share- and stakeholders in Denmark and Germany show that the Danish model cannot easily be transferred but that a need for a central market place for straw, possibly based on eRA, does exist in Germany. Proceedings of the 27th European Biomass Conference and Exhibition, 27-30 May 2019, Lisbon, Portugal, pp. 63-65
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/27theubce2019-1ao.7.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/27theubce2019-1ao.7.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019Publisher:ETA-Florence Renewable Energies Authors: Anja Mertens; Daniela Thrän; Alexandra Pfeiffer; André Brosowski;Straw as an energetic and material resource can contribute significantly towards a bioecomony and climate mitigation. Through several studies, available biomass potentials have been determined. However, little attention has been paid towards the mobilisation of the resource. In order to increase the mobilisation of straw, the study of existing purchasing mechanisms in other countries or geographical regions can provide valuable insights. By studying the Danish straw auction model, which was introduced in 2006 and is based on the purchasing mechanism of an online reverse auction (eRA), insights can be gained whether such a system is transferable to other regions. The findings from interviews with share- and stakeholders in Denmark and Germany show that the Danish model cannot easily be transferred but that a need for a central market place for straw, possibly based on eRA, does exist in Germany. Proceedings of the 27th European Biomass Conference and Exhibition, 27-30 May 2019, Lisbon, Portugal, pp. 63-65
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/27theubce2019-1ao.7.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/27theubce2019-1ao.7.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Nora Szarka; Daniela Thrän; Alberto Bezama; Marcus Eichhorn; Ronny Kittler;AbstractDefining the long-term development of Germany׳s energy sector, has been the subject of a series of studies carried out by governmental, industrial and independent interest groups. These studies play a significant role in energy political debate for understanding the long-term role of bioenergy in the national energy system. However, a deep insight and critical assessment of these studies is necessary to increase their transparency and traceability for policy and research. This article aims to provide with information for better understanding energy scenarios and to interpret the expectations of the role that bioenergy can play in 2050.Firstly, 18 long-term energy scenarios were selected based on defined criteria, and analyzed in details in terms of their goals, methods, data used and obtained results. Furthermore, four specific bioenergy-related indicators were selected to carry out a quantitative analysis and interpretation across the selected studies. The results for the four indicators show a high uncertainty and a wide range of potential bioenergy development futures in Germany by 2050 – e.g. the sustainable domestic biomass potential ranges from 350 to 1700PJ, the share of biomass in final energy consumption lies between 5 and 28% – principally due to the different key questions and methods and heterogeneous driving forces.The study provides with recommendations for energy scenario users for quality measures (e.g. traceability and transparency of methods and data) and contextualization of the results
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.02.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.02.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Nora Szarka; Daniela Thrän; Alberto Bezama; Marcus Eichhorn; Ronny Kittler;AbstractDefining the long-term development of Germany׳s energy sector, has been the subject of a series of studies carried out by governmental, industrial and independent interest groups. These studies play a significant role in energy political debate for understanding the long-term role of bioenergy in the national energy system. However, a deep insight and critical assessment of these studies is necessary to increase their transparency and traceability for policy and research. This article aims to provide with information for better understanding energy scenarios and to interpret the expectations of the role that bioenergy can play in 2050.Firstly, 18 long-term energy scenarios were selected based on defined criteria, and analyzed in details in terms of their goals, methods, data used and obtained results. Furthermore, four specific bioenergy-related indicators were selected to carry out a quantitative analysis and interpretation across the selected studies. The results for the four indicators show a high uncertainty and a wide range of potential bioenergy development futures in Germany by 2050 – e.g. the sustainable domestic biomass potential ranges from 350 to 1700PJ, the share of biomass in final energy consumption lies between 5 and 28% – principally due to the different key questions and methods and heterogeneous driving forces.The study provides with recommendations for energy scenario users for quality measures (e.g. traceability and transparency of methods and data) and contextualization of the results
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.02.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.02.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Funded by:UKRI | Project RiseUKRI| Project RiseRonja Wollnik; Malgorzata Borchers; Ruben Seibert; Susanne Abel; Pierre Herrmann; Peter Elsasser; Jakob Hildebrandt; Kathleen Meisel; Pia Hofmann; Kai Radtke; Marco Selig; Stanislav Kazmin; Nora Szarka; Daniela Thrän;Abstract Bio-based carbon dioxide removal (CDR) encompasses a wide range of (i) natural sink enhancement concepts in agriculture and on organic soils including peatlands, and in forestry, (ii) bio-based building materials, and (iii) bioenergy production with CO2 capture and storage (BECCS), which are also expected to contribute to the German climate neutrality target. While the concepts vary in CO2 removal dynamics, long-term CO2 removal potential, in specific costs and many other factors, a common database is crucial to compare and discuss the different options. To cover this gap, we provide standardised factsheets with many aspects from economics, resource base and environmental impacts to social and political implications. When comparing those concepts, we find different dynamics of their development until 2045: For CO2 removal rates from the atmosphere, natural sink enhancement concepts are characterised by gradually increasing rates, followed by a saturation and potentially a decrease after few decades; forest-related measures ramp up slowly and for construction projects and bioenergy plants, annually constant removal rates are assumed during operation which drop to zero afterwards. The natural sink enhancement concepts and some long-lived materials could be deployed immediately, whilst BECCS and ramping up construction materials still face legal and political barriers. The expenses for removing 1 t CO2 from the atmosphere were found to be between 8 and 520 € t CO2-1. All concepts investigated could theoretically be scaled up to remove over 1 million tons of CO2 during 25 years, suggesting they can become part of a portfolio of CDR measures.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3452150/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3452150/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Funded by:UKRI | Project RiseUKRI| Project RiseRonja Wollnik; Malgorzata Borchers; Ruben Seibert; Susanne Abel; Pierre Herrmann; Peter Elsasser; Jakob Hildebrandt; Kathleen Meisel; Pia Hofmann; Kai Radtke; Marco Selig; Stanislav Kazmin; Nora Szarka; Daniela Thrän;Abstract Bio-based carbon dioxide removal (CDR) encompasses a wide range of (i) natural sink enhancement concepts in agriculture and on organic soils including peatlands, and in forestry, (ii) bio-based building materials, and (iii) bioenergy production with CO2 capture and storage (BECCS), which are also expected to contribute to the German climate neutrality target. While the concepts vary in CO2 removal dynamics, long-term CO2 removal potential, in specific costs and many other factors, a common database is crucial to compare and discuss the different options. To cover this gap, we provide standardised factsheets with many aspects from economics, resource base and environmental impacts to social and political implications. When comparing those concepts, we find different dynamics of their development until 2045: For CO2 removal rates from the atmosphere, natural sink enhancement concepts are characterised by gradually increasing rates, followed by a saturation and potentially a decrease after few decades; forest-related measures ramp up slowly and for construction projects and bioenergy plants, annually constant removal rates are assumed during operation which drop to zero afterwards. The natural sink enhancement concepts and some long-lived materials could be deployed immediately, whilst BECCS and ramping up construction materials still face legal and political barriers. The expenses for removing 1 t CO2 from the atmosphere were found to be between 8 and 520 € t CO2-1. All concepts investigated could theoretically be scaled up to remove over 1 million tons of CO2 during 25 years, suggesting they can become part of a portfolio of CDR measures.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3452150/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3452150/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 GermanyPublisher:MDPI AG Funded by:EC | STAR-ProBioEC| STAR-ProBioStefan Majer; Simone Wurster; David Moosmann; Luana Ladu; Beike Sumfleth; Daniela Thrän;The concept of the bio-based economy has gained increasing attention and importance in recent years. It is seen as a chance to reduce the dependency on fossil resources while securing a sustainable supply of energy, water, and raw materials, and furthermore preserving soils, climate and the environment. The intended transformation is characterized by economic, environmental and social challenges and opportunities, and it is understood as a social transition process towards a sustainable, bio-based and nature-oriented economy. This process requires general mechanisms to establish and monitor safeguards for a sustainable development of the bio-based economy on a national and EU level. Sustainability certification and standardisation of bio-based products can help to manage biogenic resources and their derived products in a sustainable manner. In this paper, we have analysed the current status of sustainability certification and standardisation in the bio-based economy by conducting comprehensive desktop research, which was complemented by a series of expert interviews. The analysis revealed an impressive amount of existing certification frameworks, criteria, indicators and applicable standards. However, relevant gaps relating to existing criteria sets, the practical implementation of criteria in certification processes, the legislative framework, end-of-life processes, as well as necessary standardisation activities, were identified which require further research and development to improve sustainability certification and standardisation for a growing bio-based economy.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10072455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 10 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10072455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 GermanyPublisher:MDPI AG Funded by:EC | STAR-ProBioEC| STAR-ProBioStefan Majer; Simone Wurster; David Moosmann; Luana Ladu; Beike Sumfleth; Daniela Thrän;The concept of the bio-based economy has gained increasing attention and importance in recent years. It is seen as a chance to reduce the dependency on fossil resources while securing a sustainable supply of energy, water, and raw materials, and furthermore preserving soils, climate and the environment. The intended transformation is characterized by economic, environmental and social challenges and opportunities, and it is understood as a social transition process towards a sustainable, bio-based and nature-oriented economy. This process requires general mechanisms to establish and monitor safeguards for a sustainable development of the bio-based economy on a national and EU level. Sustainability certification and standardisation of bio-based products can help to manage biogenic resources and their derived products in a sustainable manner. In this paper, we have analysed the current status of sustainability certification and standardisation in the bio-based economy by conducting comprehensive desktop research, which was complemented by a series of expert interviews. The analysis revealed an impressive amount of existing certification frameworks, criteria, indicators and applicable standards. However, relevant gaps relating to existing criteria sets, the practical implementation of criteria in certification processes, the legislative framework, end-of-life processes, as well as necessary standardisation activities, were identified which require further research and development to improve sustainability certification and standardisation for a growing bio-based economy.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10072455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 10 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/7/2455/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10072455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Josephin Helka; Julia Ostrowski; Mohammad Abdel-Razek; Peter Hawighorst; Jan Henke; Stefan Majer; Daniela Thrän;doi: 10.3390/su12198273
Monitoring the potential impacts of the growing Bioeconomy (BE) is a crucial precondition for the development of viable and sustainable strategies. Potential environmental consequences from resource production for the German Bioeconomy can be assessed with the concept of environmental footprint modelling. Furthermore, remote sensing and sustainability certification are tools that can support risk assessment and mitigation i.e., regarding land use (change), biodiversity, carbon stocks, and water consumption. Thus, they can complement the results of footprint models and produce assessment results with a much higher resolution. Among other things, this can enable the development of strategies for more sustainable production practices in high-risk areas and avoid potential bans of biomass imports from entire countries/regions. The conducted case study on palm oil in this paper shows intersections between indicators used in sustainability certification systems and in footprint modelling considering processes on plantation and mill levels. Local best practices for the sustainable production of biomass are identified through a literature review and are extended by a survey, which evaluates the feasibility and conditions of implementing the selected practices on plantations. The conceptual approach outlined in this paper can be seen as a first step towards an integrated sustainability risk analysis of processes and products used within the BE that might be further developed from this starting point. It takes into account footprint modelling data, the use of sustainability certification systems, and data and results from remote sensing analyses. This will enable low-risk producers of renewable resources, who are located in regions generally flagged as high-risk when using environmental footprint modelling, not to be excluded from market activities but to set best practice examples that can then be expanded into these regions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/19/8273/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/19/8273/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Josephin Helka; Julia Ostrowski; Mohammad Abdel-Razek; Peter Hawighorst; Jan Henke; Stefan Majer; Daniela Thrän;doi: 10.3390/su12198273
Monitoring the potential impacts of the growing Bioeconomy (BE) is a crucial precondition for the development of viable and sustainable strategies. Potential environmental consequences from resource production for the German Bioeconomy can be assessed with the concept of environmental footprint modelling. Furthermore, remote sensing and sustainability certification are tools that can support risk assessment and mitigation i.e., regarding land use (change), biodiversity, carbon stocks, and water consumption. Thus, they can complement the results of footprint models and produce assessment results with a much higher resolution. Among other things, this can enable the development of strategies for more sustainable production practices in high-risk areas and avoid potential bans of biomass imports from entire countries/regions. The conducted case study on palm oil in this paper shows intersections between indicators used in sustainability certification systems and in footprint modelling considering processes on plantation and mill levels. Local best practices for the sustainable production of biomass are identified through a literature review and are extended by a survey, which evaluates the feasibility and conditions of implementing the selected practices on plantations. The conceptual approach outlined in this paper can be seen as a first step towards an integrated sustainability risk analysis of processes and products used within the BE that might be further developed from this starting point. It takes into account footprint modelling data, the use of sustainability certification systems, and data and results from remote sensing analyses. This will enable low-risk producers of renewable resources, who are located in regions generally flagged as high-risk when using environmental footprint modelling, not to be excluded from market activities but to set best practice examples that can then be expanded into these regions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/19/8273/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/19/8273/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Daniela Thrän; Stefanie B. Seitz; André Brosowski; Marco Klemm; Eric Billig; Janet Witt;AbstractBioenergy carriers are used in different energy sectors. While the bioenergy supply from energy crops is limited, there is still reasonable unused potential from residues and waste. Improved qualities are necessary with regard to energy density, storability, energy content, flexible application, and related emissions. Especially solid and gaseous biofuels can be generated with reasonable effort and are suitable for utilizing the available waste and residual streams. These advanced bioenergy carriers can support the energy transition significantly, but need support for market introduction.
Chemie Ingenieur Tec... arrow_drop_down Chemie Ingenieur TechnikArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.201700083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Chemie Ingenieur Tec... arrow_drop_down Chemie Ingenieur TechnikArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.201700083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Daniela Thrän; Stefanie B. Seitz; André Brosowski; Marco Klemm; Eric Billig; Janet Witt;AbstractBioenergy carriers are used in different energy sectors. While the bioenergy supply from energy crops is limited, there is still reasonable unused potential from residues and waste. Improved qualities are necessary with regard to energy density, storability, energy content, flexible application, and related emissions. Especially solid and gaseous biofuels can be generated with reasonable effort and are suitable for utilizing the available waste and residual streams. These advanced bioenergy carriers can support the energy transition significantly, but need support for market introduction.
Chemie Ingenieur Tec... arrow_drop_down Chemie Ingenieur TechnikArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.201700083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Chemie Ingenieur Tec... arrow_drop_down Chemie Ingenieur TechnikArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cite.201700083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:SAGE Publications Authors: Daniela Thrän; Daniel Reißmann; Alberto Bezama;pmid: 30028278
A considerable amount of wet biogenic residues and waste has no resource-efficient use in several European countries yet. Hydrothermal processes (HTP) seem to be promising for treating such biomass as they best work with substrates with 70% to 90% water content. However, thus far the suitability of HTP for this purpose has not been sufficiently evaluated, for which this work aims to identify suitable multi-criteria analysis (MCA) methods that can be used to identify promising ways for the hydrothermal treatment of wet bio-waste. A review on 31 recent MCA studies in bio-waste management was conducted with the aim of comparing them to methodological requirements for evaluating HTP. Furthermore, an MCA approach for HTP based on the review findings is proposed. Results show that no observed MCA method is directly transferable for assessing HTP, for which a customized approach combining the analytical hierarchy process and the technique for order preference by similarity to ideal solutions is proposed and preliminarily validated with literature data. These preliminary calculations indicate that hydrothermal gasification seems most promising under consideration of multiple criteria using the available average and exemplary data. However, needless to say there is still a long way to go to obtain the sufficient adequate data to validate and use the model appropriately, for which further studies are necessary to acquire more reliable data and to assess also future technology developments of HTP.
Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x18785735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x18785735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:SAGE Publications Authors: Daniela Thrän; Daniel Reißmann; Alberto Bezama;pmid: 30028278
A considerable amount of wet biogenic residues and waste has no resource-efficient use in several European countries yet. Hydrothermal processes (HTP) seem to be promising for treating such biomass as they best work with substrates with 70% to 90% water content. However, thus far the suitability of HTP for this purpose has not been sufficiently evaluated, for which this work aims to identify suitable multi-criteria analysis (MCA) methods that can be used to identify promising ways for the hydrothermal treatment of wet bio-waste. A review on 31 recent MCA studies in bio-waste management was conducted with the aim of comparing them to methodological requirements for evaluating HTP. Furthermore, an MCA approach for HTP based on the review findings is proposed. Results show that no observed MCA method is directly transferable for assessing HTP, for which a customized approach combining the analytical hierarchy process and the technique for order preference by similarity to ideal solutions is proposed and preliminarily validated with literature data. These preliminary calculations indicate that hydrothermal gasification seems most promising under consideration of multiple criteria using the available average and exemplary data. However, needless to say there is still a long way to go to obtain the sufficient adequate data to validate and use the model appropriately, for which further studies are necessary to acquire more reliable data and to assess also future technology developments of HTP.
Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x18785735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x18785735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Publisher:MDPI AG Amalia Suryani; Alberto Bezama; Claudia Mair-Bauernfeind; Macben Makenzi; Daniela Thrän;doi: 10.3390/su14095611
The tea industry in Kenya is among the main consumers of firewood for its intensive thermal energy demand. Along with the growing concerns about firewood depletion, tea factories have begun transitioning to alternative fuels to power their boilers. Briquettes made of biomass residues are among the promising solutions; however, they are not yet widely adopted. This study was conducted to identify the factors that motivate the tea factories to use biomass briquettes instead of firewood and the factors hindering such substitution. The substitution potential was assessed, and the drivers and barriers of the substitution were examined using a combination of SWOT (strengths, weaknesses, opportunities, and threats) analysis and a PESTEL (political, economic, social, technological, environmental, and legal) framework. The findings suggest that even though using biomass briquettes is technically possible, it is not economically favorable for tea factories. The SWOT/PESTEL analysis identified 27 factors influencing the substitution. Among the key drivers are the depleting supply of firewood, the availability of biomass residues, and the external support from development organizations to improve the technical capacity in both tea and briquette industries. The study revealed the barriers to substitution include the cost competitiveness, insufficient supply, and varying quality of briquettes, as well as the lack of awareness and knowledge of briquettes.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/9/5611/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/9/5611/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Publisher:MDPI AG Amalia Suryani; Alberto Bezama; Claudia Mair-Bauernfeind; Macben Makenzi; Daniela Thrän;doi: 10.3390/su14095611
The tea industry in Kenya is among the main consumers of firewood for its intensive thermal energy demand. Along with the growing concerns about firewood depletion, tea factories have begun transitioning to alternative fuels to power their boilers. Briquettes made of biomass residues are among the promising solutions; however, they are not yet widely adopted. This study was conducted to identify the factors that motivate the tea factories to use biomass briquettes instead of firewood and the factors hindering such substitution. The substitution potential was assessed, and the drivers and barriers of the substitution were examined using a combination of SWOT (strengths, weaknesses, opportunities, and threats) analysis and a PESTEL (political, economic, social, technological, environmental, and legal) framework. The findings suggest that even though using biomass briquettes is technically possible, it is not economically favorable for tea factories. The SWOT/PESTEL analysis identified 27 factors influencing the substitution. Among the key drivers are the depleting supply of firewood, the availability of biomass residues, and the external support from development organizations to improve the technical capacity in both tea and briquette industries. The study revealed the barriers to substitution include the cost competitiveness, insufficient supply, and varying quality of briquettes, as well as the lack of awareness and knowledge of briquettes.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/9/5611/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/9/5611/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14095611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | STAR-ProBioEC| STAR-ProBioAuthors: Beike Sumfleth; Stefan Majer; Daniela Thrän;doi: 10.3390/su12198147
The development of a sustainable biobased economy (BBE) in Europe is associated with several challenges. Amongst others, lessons learned from the development of the biofuel sector and the complex debate around land use change associated with a growing demand for biomass have to be considered when developing BBE policies. In that regard, strategies to identify and verify feedstocks with low potential risks for direct and indirect land use change (iLUC) impacts are of specific importance. Complementing existing efforts to assess iLUC with modelling activities, the European Commission (EC) has proposed a risk-based approach, aiming to differentiate high and low iLUC risk biomass. Amongst others, different additionality measures can be used to produce certified biomass with low iLUC risk. However, a comprehensive overview and analysis of these additionality measures and the challenges related to their integration in an integer verification approach is still missing. Therefore, we analyse European Union (EU) policies dealing with iLUC, iLUC risk assessment studies, certification approaches, and iLUC modelling studies to identify and develop additionality practices potentially applicable in certification and to show how the potential application of the proposed measures could be realised and verified in practice. We identified five potential practices for low iLUC risk biomass production, which are likely to be used by market actors. For each practice, we identified methods for the determination of low iLUC risk feedstock and products. Finally, our review includes recommendations for follow-up activities towards the actual implementation of additionality measures in biomass certification schemes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | STAR-ProBioEC| STAR-ProBioAuthors: Beike Sumfleth; Stefan Majer; Daniela Thrän;doi: 10.3390/su12198147
The development of a sustainable biobased economy (BBE) in Europe is associated with several challenges. Amongst others, lessons learned from the development of the biofuel sector and the complex debate around land use change associated with a growing demand for biomass have to be considered when developing BBE policies. In that regard, strategies to identify and verify feedstocks with low potential risks for direct and indirect land use change (iLUC) impacts are of specific importance. Complementing existing efforts to assess iLUC with modelling activities, the European Commission (EC) has proposed a risk-based approach, aiming to differentiate high and low iLUC risk biomass. Amongst others, different additionality measures can be used to produce certified biomass with low iLUC risk. However, a comprehensive overview and analysis of these additionality measures and the challenges related to their integration in an integer verification approach is still missing. Therefore, we analyse European Union (EU) policies dealing with iLUC, iLUC risk assessment studies, certification approaches, and iLUC modelling studies to identify and develop additionality practices potentially applicable in certification and to show how the potential application of the proposed measures could be realised and verified in practice. We identified five potential practices for low iLUC risk biomass production, which are likely to be used by market actors. For each practice, we identified methods for the determination of low iLUC risk feedstock and products. Finally, our review includes recommendations for follow-up activities towards the actual implementation of additionality measures in biomass certification schemes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Sören Richter; Nora Szarka; Alberto Bezama; Daniela Thrän;doi: 10.3390/su14053045
A future bioeconomy pursues the transformation of the resource base from fossil to renewable materials in an effort to develop a holistic, sustainable production and provision system. While the significance of this change in the German context is not yet entirely explored, scenarios analysing possible pathways could support the understanding of these changes and their systemic implications. Bioeconomy in detail depends on respective framework conditions, such as the availability of biomass or technological research priorities. Thus, for scenario creation, transferable methods for flexible input settings are needed. Addressing this issue, the study identifies relevant bioeconomy scenario drivers. With the theoretical approach of narrative analysis, 92 statements of the German National Bioeconomy Strategy 2020 have been evaluated and 21 international studies in a STEEPLE framework were assessed. For a future German bioeconomy 19 important drivers could be determined and specific aspects of the resource base, production processes and products as well as overarching issues were exploratively characterised on a quantitative and qualitative basis. The developed method demonstrate an approach for a transparent scenario driver identification that is applicable to other strategy papers. The results illustrate a possible future German bioeconomy that is resource- and technology-driven by following a value-based objective, and which is supplied by biogenic residue and side product feedstocks. As such, the bioeconomy scenario drivers can be used as a starting point for future research like scenario development or modelling of a future German bioeconomy.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/3045/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/3045/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Sören Richter; Nora Szarka; Alberto Bezama; Daniela Thrän;doi: 10.3390/su14053045
A future bioeconomy pursues the transformation of the resource base from fossil to renewable materials in an effort to develop a holistic, sustainable production and provision system. While the significance of this change in the German context is not yet entirely explored, scenarios analysing possible pathways could support the understanding of these changes and their systemic implications. Bioeconomy in detail depends on respective framework conditions, such as the availability of biomass or technological research priorities. Thus, for scenario creation, transferable methods for flexible input settings are needed. Addressing this issue, the study identifies relevant bioeconomy scenario drivers. With the theoretical approach of narrative analysis, 92 statements of the German National Bioeconomy Strategy 2020 have been evaluated and 21 international studies in a STEEPLE framework were assessed. For a future German bioeconomy 19 important drivers could be determined and specific aspects of the resource base, production processes and products as well as overarching issues were exploratively characterised on a quantitative and qualitative basis. The developed method demonstrate an approach for a transparent scenario driver identification that is applicable to other strategy papers. The results illustrate a possible future German bioeconomy that is resource- and technology-driven by following a value-based objective, and which is supplied by biogenic residue and side product feedstocks. As such, the bioeconomy scenario drivers can be used as a starting point for future research like scenario development or modelling of a future German bioeconomy.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/3045/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/3045/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019Publisher:ETA-Florence Renewable Energies Authors: Anja Mertens; Daniela Thrän; Alexandra Pfeiffer; André Brosowski;Straw as an energetic and material resource can contribute significantly towards a bioecomony and climate mitigation. Through several studies, available biomass potentials have been determined. However, little attention has been paid towards the mobilisation of the resource. In order to increase the mobilisation of straw, the study of existing purchasing mechanisms in other countries or geographical regions can provide valuable insights. By studying the Danish straw auction model, which was introduced in 2006 and is based on the purchasing mechanism of an online reverse auction (eRA), insights can be gained whether such a system is transferable to other regions. The findings from interviews with share- and stakeholders in Denmark and Germany show that the Danish model cannot easily be transferred but that a need for a central market place for straw, possibly based on eRA, does exist in Germany. Proceedings of the 27th European Biomass Conference and Exhibition, 27-30 May 2019, Lisbon, Portugal, pp. 63-65
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/27theubce2019-1ao.7.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/27theubce2019-1ao.7.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019Publisher:ETA-Florence Renewable Energies Authors: Anja Mertens; Daniela Thrän; Alexandra Pfeiffer; André Brosowski;Straw as an energetic and material resource can contribute significantly towards a bioecomony and climate mitigation. Through several studies, available biomass potentials have been determined. However, little attention has been paid towards the mobilisation of the resource. In order to increase the mobilisation of straw, the study of existing purchasing mechanisms in other countries or geographical regions can provide valuable insights. By studying the Danish straw auction model, which was introduced in 2006 and is based on the purchasing mechanism of an online reverse auction (eRA), insights can be gained whether such a system is transferable to other regions. The findings from interviews with share- and stakeholders in Denmark and Germany show that the Danish model cannot easily be transferred but that a need for a central market place for straw, possibly based on eRA, does exist in Germany. Proceedings of the 27th European Biomass Conference and Exhibition, 27-30 May 2019, Lisbon, Portugal, pp. 63-65
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/27theubce2019-1ao.7.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/27theubce2019-1ao.7.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Nora Szarka; Daniela Thrän; Alberto Bezama; Marcus Eichhorn; Ronny Kittler;AbstractDefining the long-term development of Germany׳s energy sector, has been the subject of a series of studies carried out by governmental, industrial and independent interest groups. These studies play a significant role in energy political debate for understanding the long-term role of bioenergy in the national energy system. However, a deep insight and critical assessment of these studies is necessary to increase their transparency and traceability for policy and research. This article aims to provide with information for better understanding energy scenarios and to interpret the expectations of the role that bioenergy can play in 2050.Firstly, 18 long-term energy scenarios were selected based on defined criteria, and analyzed in details in terms of their goals, methods, data used and obtained results. Furthermore, four specific bioenergy-related indicators were selected to carry out a quantitative analysis and interpretation across the selected studies. The results for the four indicators show a high uncertainty and a wide range of potential bioenergy development futures in Germany by 2050 – e.g. the sustainable domestic biomass potential ranges from 350 to 1700PJ, the share of biomass in final energy consumption lies between 5 and 28% – principally due to the different key questions and methods and heterogeneous driving forces.The study provides with recommendations for energy scenario users for quality measures (e.g. traceability and transparency of methods and data) and contextualization of the results
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.02.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.02.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Nora Szarka; Daniela Thrän; Alberto Bezama; Marcus Eichhorn; Ronny Kittler;AbstractDefining the long-term development of Germany׳s energy sector, has been the subject of a series of studies carried out by governmental, industrial and independent interest groups. These studies play a significant role in energy political debate for understanding the long-term role of bioenergy in the national energy system. However, a deep insight and critical assessment of these studies is necessary to increase their transparency and traceability for policy and research. This article aims to provide with information for better understanding energy scenarios and to interpret the expectations of the role that bioenergy can play in 2050.Firstly, 18 long-term energy scenarios were selected based on defined criteria, and analyzed in details in terms of their goals, methods, data used and obtained results. Furthermore, four specific bioenergy-related indicators were selected to carry out a quantitative analysis and interpretation across the selected studies. The results for the four indicators show a high uncertainty and a wide range of potential bioenergy development futures in Germany by 2050 – e.g. the sustainable domestic biomass potential ranges from 350 to 1700PJ, the share of biomass in final energy consumption lies between 5 and 28% – principally due to the different key questions and methods and heterogeneous driving forces.The study provides with recommendations for energy scenario users for quality measures (e.g. traceability and transparency of methods and data) and contextualization of the results
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.02.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.02.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu