Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
    Clear
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 13. Climate action

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wei Chen; Li Yang; Minking K. Chyu;

    Abstract Transpiration cooling is one of the most efficient cooling technologies to protect hot section components such as turbine airfoils, missile heads and shells of rockets or space craft. This external cooling method has much higher efficiency than film cooling when consuming the same amount of coolant, due to the uniformity of coolant distribution. However, pore plugging, which frequently occurs during the operation of transpiration cooled components, has limited its long term stability and prevented its application in industrial components. Dust deposition is one of the main reasons causing plugging of pores for transpiration cooling. Although a lot of effort has been devoted into explaining dust deposition and erosion mechanisms of transpiration cooled components, reducing plugging impact remained difficult as the plugging caused by dusts was unpredictable for traditional porous media. Additive manufacturing, with capability to precisely construct structures in small scales, has emerged as considerable new tool to enhance the controllability of porous media, and furthermore, to achieve a good solution to minimize the plugging disadvantage. The present study selected a transpiration cooling configuration perforated by straight holes with an additive manufacturable diameter of 0.4 mm. Computational Fluid Dynamics (CFD) methods were employed to model the pore plugging and its effect on heat transfer. A scripting code in addition to the ANSYS CFX solver was utilized to simulate the random plugging conditions of the holes. Two hundred numerical cases with four different plugging probabilities were calculated and statistically evaluated to quantify the disadvantage of pore plugging on the cooling effectiveness. A theoretic model with convolution functions was developed to predict the local cooling effectiveness. Results obtained from the numerical analysis indicated that the overall plugging ratio was a dominating parameter for the cooling effectiveness but this single parameter was not adequate to scale the cooling effectiveness for all locations. On the contrary, the unique pair of discrete convolution parameters indexing all other transpiration holes in the array developed in this study had a significantly higher accuracy in predicting the cooling effectiveness than the overall plugging ratio. The present study was among one of the earliest to use convolution modeling method to predict transpiration cooling and related plugging disadvantages. This effort could provide a quantitative understanding of the random plugging on the specific transpiration cooling configuration, and could benefit further optimization effort to reduce the plugging disadvantage of transpiration cooling using additive manufacturing.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Heat and Mass Transfer
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Heat and Mass Transfer
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wei Chen; Li Yang; Minking K. Chyu;

    Abstract Transpiration cooling is one of the most efficient cooling technologies to protect hot section components such as turbine airfoils, missile heads and shells of rockets or space craft. This external cooling method has much higher efficiency than film cooling when consuming the same amount of coolant, due to the uniformity of coolant distribution. However, pore plugging, which frequently occurs during the operation of transpiration cooled components, has limited its long term stability and prevented its application in industrial components. Dust deposition is one of the main reasons causing plugging of pores for transpiration cooling. Although a lot of effort has been devoted into explaining dust deposition and erosion mechanisms of transpiration cooled components, reducing plugging impact remained difficult as the plugging caused by dusts was unpredictable for traditional porous media. Additive manufacturing, with capability to precisely construct structures in small scales, has emerged as considerable new tool to enhance the controllability of porous media, and furthermore, to achieve a good solution to minimize the plugging disadvantage. The present study selected a transpiration cooling configuration perforated by straight holes with an additive manufacturable diameter of 0.4 mm. Computational Fluid Dynamics (CFD) methods were employed to model the pore plugging and its effect on heat transfer. A scripting code in addition to the ANSYS CFX solver was utilized to simulate the random plugging conditions of the holes. Two hundred numerical cases with four different plugging probabilities were calculated and statistically evaluated to quantify the disadvantage of pore plugging on the cooling effectiveness. A theoretic model with convolution functions was developed to predict the local cooling effectiveness. Results obtained from the numerical analysis indicated that the overall plugging ratio was a dominating parameter for the cooling effectiveness but this single parameter was not adequate to scale the cooling effectiveness for all locations. On the contrary, the unique pair of discrete convolution parameters indexing all other transpiration holes in the array developed in this study had a significantly higher accuracy in predicting the cooling effectiveness than the overall plugging ratio. The present study was among one of the earliest to use convolution modeling method to predict transpiration cooling and related plugging disadvantages. This effort could provide a quantitative understanding of the random plugging on the specific transpiration cooling configuration, and could benefit further optimization effort to reduce the plugging disadvantage of transpiration cooling using additive manufacturing.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Heat and Mass Transfer
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Heat and Mass Transfer
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Sean C. Siw; Mary Anne Alvin; Ventzislav G. Karaivanov; William S. Slaughter; +2 Authors

    To meet the performance goals of advanced fossil power generation systems, future coal-gas fired turbines will likely be operated at temperatures higher than those in the current commercial natural gas-fired systems. The working fluid in these future turbines could contain substantial moisture (steam), mixed with carbon dioxide, instead of air or nitrogen in conventional gas turbines. As a result, the aerothermal characteristics among the advanced turbine systems are expected to be significantly different, not only from the natural gas turbines but also will be dependent strongly on the compositions of turbine working fluids. Described in this paper is a quantitative comparison of thermal load on the external surface of turbine airfoils that are projected to be utilized in different power cycles the U.S. Department of Energy plans for the next 2 decades. The study is pursued with a computational simulation, based on the three-dimensional computational fluid dynamics analysis. While the heat transfer coefficient has shown to vary strongly along the surface of the airfoil, the projected trends were relatively comparable for airfoils in syngas and hydrogen-fired cycles. However, the heat transfer coefficient for the oxyfuel cycle is found to be substantially higher by about 50–60% than its counterparts in syngas and hydrogen turbines. This is largely caused by the high steam concentration in the turbine flow. Results gained from this study overall suggest that advances in cooling technology and thermal barrier coatings are critical for developments of future coal-based turbine technologies with near zero emissions.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Sean C. Siw; Mary Anne Alvin; Ventzislav G. Karaivanov; William S. Slaughter; +2 Authors

    To meet the performance goals of advanced fossil power generation systems, future coal-gas fired turbines will likely be operated at temperatures higher than those in the current commercial natural gas-fired systems. The working fluid in these future turbines could contain substantial moisture (steam), mixed with carbon dioxide, instead of air or nitrogen in conventional gas turbines. As a result, the aerothermal characteristics among the advanced turbine systems are expected to be significantly different, not only from the natural gas turbines but also will be dependent strongly on the compositions of turbine working fluids. Described in this paper is a quantitative comparison of thermal load on the external surface of turbine airfoils that are projected to be utilized in different power cycles the U.S. Department of Energy plans for the next 2 decades. The study is pursued with a computational simulation, based on the three-dimensional computational fluid dynamics analysis. While the heat transfer coefficient has shown to vary strongly along the surface of the airfoil, the projected trends were relatively comparable for airfoils in syngas and hydrogen-fired cycles. However, the heat transfer coefficient for the oxyfuel cycle is found to be substantially higher by about 50–60% than its counterparts in syngas and hydrogen turbines. This is largely caused by the high steam concentration in the turbine flow. Results gained from this study overall suggest that advances in cooling technology and thermal barrier coatings are critical for developments of future coal-based turbine technologies with near zero emissions.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Mary Anne Alvin; Ventzislav G. Karaivanov; William S. Slaughter; Minking K. Chyu; +1 Authors

    Future advanced turbine systems for electric power generation systems, based on coal-gasified fuels with CO2 capture and sequestration, are aimed for achieving higher cycle efficiency and near-zero emission. Most promising operating cycles being developed are hydrogen-fired cycle and oxy-fuel cycle. Both cycles will likely have turbine working fluids significantly different from that of conventional air-based gas turbines. In addition, the oxy-fuel cycle will have a turbine inlet temperature target at approximately 2030K (1760°C), significantly higher than the current level. This suggests that aerothermal control and cooling will play a critical role in realizing our nation’s future fossil power generation systems. This paper provides a computational analysis in comparing the internal cooling performance of a double-wall or skin-cooled airfoil to that of an equivalent serpentine-cooled airfoil. The present results reveal that the double-wall or skin cooled approach produces superior performance than the conventional serpentine designs. This is particularly effective for the oxy-fuel turbine with elevated turbine inlet temperatures. The effects of coolant-side internal heat transfer coefficient on the airfoil metal temperature in both hydrogen-fired and oxy-fuel turbines are evaluated. The contribution of thermal barrier coatings (TBC) toward overall thermal protection for turbine airfoil cooled under these two different cooling configurations is also assessed.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Mary Anne Alvin; Ventzislav G. Karaivanov; William S. Slaughter; Minking K. Chyu; +1 Authors

    Future advanced turbine systems for electric power generation systems, based on coal-gasified fuels with CO2 capture and sequestration, are aimed for achieving higher cycle efficiency and near-zero emission. Most promising operating cycles being developed are hydrogen-fired cycle and oxy-fuel cycle. Both cycles will likely have turbine working fluids significantly different from that of conventional air-based gas turbines. In addition, the oxy-fuel cycle will have a turbine inlet temperature target at approximately 2030K (1760°C), significantly higher than the current level. This suggests that aerothermal control and cooling will play a critical role in realizing our nation’s future fossil power generation systems. This paper provides a computational analysis in comparing the internal cooling performance of a double-wall or skin-cooled airfoil to that of an equivalent serpentine-cooled airfoil. The present results reveal that the double-wall or skin cooled approach produces superior performance than the conventional serpentine designs. This is particularly effective for the oxy-fuel turbine with elevated turbine inlet temperatures. The effects of coolant-side internal heat transfer coefficient on the airfoil metal temperature in both hydrogen-fired and oxy-fuel turbines are evaluated. The contribution of thermal barrier coatings (TBC) toward overall thermal protection for turbine airfoil cooled under these two different cooling configurations is also assessed.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wei Chen; Li Yang; Minking K. Chyu;

    Abstract Transpiration cooling is one of the most efficient cooling technologies to protect hot section components such as turbine airfoils, missile heads and shells of rockets or space craft. This external cooling method has much higher efficiency than film cooling when consuming the same amount of coolant, due to the uniformity of coolant distribution. However, pore plugging, which frequently occurs during the operation of transpiration cooled components, has limited its long term stability and prevented its application in industrial components. Dust deposition is one of the main reasons causing plugging of pores for transpiration cooling. Although a lot of effort has been devoted into explaining dust deposition and erosion mechanisms of transpiration cooled components, reducing plugging impact remained difficult as the plugging caused by dusts was unpredictable for traditional porous media. Additive manufacturing, with capability to precisely construct structures in small scales, has emerged as considerable new tool to enhance the controllability of porous media, and furthermore, to achieve a good solution to minimize the plugging disadvantage. The present study selected a transpiration cooling configuration perforated by straight holes with an additive manufacturable diameter of 0.4 mm. Computational Fluid Dynamics (CFD) methods were employed to model the pore plugging and its effect on heat transfer. A scripting code in addition to the ANSYS CFX solver was utilized to simulate the random plugging conditions of the holes. Two hundred numerical cases with four different plugging probabilities were calculated and statistically evaluated to quantify the disadvantage of pore plugging on the cooling effectiveness. A theoretic model with convolution functions was developed to predict the local cooling effectiveness. Results obtained from the numerical analysis indicated that the overall plugging ratio was a dominating parameter for the cooling effectiveness but this single parameter was not adequate to scale the cooling effectiveness for all locations. On the contrary, the unique pair of discrete convolution parameters indexing all other transpiration holes in the array developed in this study had a significantly higher accuracy in predicting the cooling effectiveness than the overall plugging ratio. The present study was among one of the earliest to use convolution modeling method to predict transpiration cooling and related plugging disadvantages. This effort could provide a quantitative understanding of the random plugging on the specific transpiration cooling configuration, and could benefit further optimization effort to reduce the plugging disadvantage of transpiration cooling using additive manufacturing.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Heat and Mass Transfer
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Heat and Mass Transfer
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wei Chen; Li Yang; Minking K. Chyu;

    Abstract Transpiration cooling is one of the most efficient cooling technologies to protect hot section components such as turbine airfoils, missile heads and shells of rockets or space craft. This external cooling method has much higher efficiency than film cooling when consuming the same amount of coolant, due to the uniformity of coolant distribution. However, pore plugging, which frequently occurs during the operation of transpiration cooled components, has limited its long term stability and prevented its application in industrial components. Dust deposition is one of the main reasons causing plugging of pores for transpiration cooling. Although a lot of effort has been devoted into explaining dust deposition and erosion mechanisms of transpiration cooled components, reducing plugging impact remained difficult as the plugging caused by dusts was unpredictable for traditional porous media. Additive manufacturing, with capability to precisely construct structures in small scales, has emerged as considerable new tool to enhance the controllability of porous media, and furthermore, to achieve a good solution to minimize the plugging disadvantage. The present study selected a transpiration cooling configuration perforated by straight holes with an additive manufacturable diameter of 0.4 mm. Computational Fluid Dynamics (CFD) methods were employed to model the pore plugging and its effect on heat transfer. A scripting code in addition to the ANSYS CFX solver was utilized to simulate the random plugging conditions of the holes. Two hundred numerical cases with four different plugging probabilities were calculated and statistically evaluated to quantify the disadvantage of pore plugging on the cooling effectiveness. A theoretic model with convolution functions was developed to predict the local cooling effectiveness. Results obtained from the numerical analysis indicated that the overall plugging ratio was a dominating parameter for the cooling effectiveness but this single parameter was not adequate to scale the cooling effectiveness for all locations. On the contrary, the unique pair of discrete convolution parameters indexing all other transpiration holes in the array developed in this study had a significantly higher accuracy in predicting the cooling effectiveness than the overall plugging ratio. The present study was among one of the earliest to use convolution modeling method to predict transpiration cooling and related plugging disadvantages. This effort could provide a quantitative understanding of the random plugging on the specific transpiration cooling configuration, and could benefit further optimization effort to reduce the plugging disadvantage of transpiration cooling using additive manufacturing.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Heat and Mass Transfer
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Heat and Mass Transfer
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Sean C. Siw; Mary Anne Alvin; Ventzislav G. Karaivanov; William S. Slaughter; +2 Authors

    To meet the performance goals of advanced fossil power generation systems, future coal-gas fired turbines will likely be operated at temperatures higher than those in the current commercial natural gas-fired systems. The working fluid in these future turbines could contain substantial moisture (steam), mixed with carbon dioxide, instead of air or nitrogen in conventional gas turbines. As a result, the aerothermal characteristics among the advanced turbine systems are expected to be significantly different, not only from the natural gas turbines but also will be dependent strongly on the compositions of turbine working fluids. Described in this paper is a quantitative comparison of thermal load on the external surface of turbine airfoils that are projected to be utilized in different power cycles the U.S. Department of Energy plans for the next 2 decades. The study is pursued with a computational simulation, based on the three-dimensional computational fluid dynamics analysis. While the heat transfer coefficient has shown to vary strongly along the surface of the airfoil, the projected trends were relatively comparable for airfoils in syngas and hydrogen-fired cycles. However, the heat transfer coefficient for the oxyfuel cycle is found to be substantially higher by about 50–60% than its counterparts in syngas and hydrogen turbines. This is largely caused by the high steam concentration in the turbine flow. Results gained from this study overall suggest that advances in cooling technology and thermal barrier coatings are critical for developments of future coal-based turbine technologies with near zero emissions.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Sean C. Siw; Mary Anne Alvin; Ventzislav G. Karaivanov; William S. Slaughter; +2 Authors

    To meet the performance goals of advanced fossil power generation systems, future coal-gas fired turbines will likely be operated at temperatures higher than those in the current commercial natural gas-fired systems. The working fluid in these future turbines could contain substantial moisture (steam), mixed with carbon dioxide, instead of air or nitrogen in conventional gas turbines. As a result, the aerothermal characteristics among the advanced turbine systems are expected to be significantly different, not only from the natural gas turbines but also will be dependent strongly on the compositions of turbine working fluids. Described in this paper is a quantitative comparison of thermal load on the external surface of turbine airfoils that are projected to be utilized in different power cycles the U.S. Department of Energy plans for the next 2 decades. The study is pursued with a computational simulation, based on the three-dimensional computational fluid dynamics analysis. While the heat transfer coefficient has shown to vary strongly along the surface of the airfoil, the projected trends were relatively comparable for airfoils in syngas and hydrogen-fired cycles. However, the heat transfer coefficient for the oxyfuel cycle is found to be substantially higher by about 50–60% than its counterparts in syngas and hydrogen turbines. This is largely caused by the high steam concentration in the turbine flow. Results gained from this study overall suggest that advances in cooling technology and thermal barrier coatings are critical for developments of future coal-based turbine technologies with near zero emissions.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Mary Anne Alvin; Ventzislav G. Karaivanov; William S. Slaughter; Minking K. Chyu; +1 Authors

    Future advanced turbine systems for electric power generation systems, based on coal-gasified fuels with CO2 capture and sequestration, are aimed for achieving higher cycle efficiency and near-zero emission. Most promising operating cycles being developed are hydrogen-fired cycle and oxy-fuel cycle. Both cycles will likely have turbine working fluids significantly different from that of conventional air-based gas turbines. In addition, the oxy-fuel cycle will have a turbine inlet temperature target at approximately 2030K (1760°C), significantly higher than the current level. This suggests that aerothermal control and cooling will play a critical role in realizing our nation’s future fossil power generation systems. This paper provides a computational analysis in comparing the internal cooling performance of a double-wall or skin-cooled airfoil to that of an equivalent serpentine-cooled airfoil. The present results reveal that the double-wall or skin cooled approach produces superior performance than the conventional serpentine designs. This is particularly effective for the oxy-fuel turbine with elevated turbine inlet temperatures. The effects of coolant-side internal heat transfer coefficient on the airfoil metal temperature in both hydrogen-fired and oxy-fuel turbines are evaluated. The contribution of thermal barrier coatings (TBC) toward overall thermal protection for turbine airfoil cooled under these two different cooling configurations is also assessed.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Mary Anne Alvin; Ventzislav G. Karaivanov; William S. Slaughter; Minking K. Chyu; +1 Authors

    Future advanced turbine systems for electric power generation systems, based on coal-gasified fuels with CO2 capture and sequestration, are aimed for achieving higher cycle efficiency and near-zero emission. Most promising operating cycles being developed are hydrogen-fired cycle and oxy-fuel cycle. Both cycles will likely have turbine working fluids significantly different from that of conventional air-based gas turbines. In addition, the oxy-fuel cycle will have a turbine inlet temperature target at approximately 2030K (1760°C), significantly higher than the current level. This suggests that aerothermal control and cooling will play a critical role in realizing our nation’s future fossil power generation systems. This paper provides a computational analysis in comparing the internal cooling performance of a double-wall or skin-cooled airfoil to that of an equivalent serpentine-cooled airfoil. The present results reveal that the double-wall or skin cooled approach produces superior performance than the conventional serpentine designs. This is particularly effective for the oxy-fuel turbine with elevated turbine inlet temperatures. The effects of coolant-side internal heat transfer coefficient on the airfoil metal temperature in both hydrogen-fired and oxy-fuel turbines are evaluated. The contribution of thermal barrier coatings (TBC) toward overall thermal protection for turbine airfoil cooled under these two different cooling configurations is also assessed.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph