- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 SpainPublisher:MDPI AG Funded by:EC | SOCLIMPACTEC| SOCLIMPACTAuthors: Gutiérrez, Claudia; de la Vara, Alba; González-Alemán, Juan Jesús; Gaertner, Miguel Angel;doi: 10.3390/su13084104
handle: 20.500.14352/7413
The progressive energy transition to systems with higher shares of renewable energy is particularly important in islands regions, which are largely dependent on energy imports. In this context, to assess the impact of climate change on renewable energy resources during the 21st century is crucial for polycimakers and stakeholders. In this work, we provide an overview of wind and photovoltaic (PV) resources, its variability and complementarity between them, as well as their future changes, in the Canary Islands and surrounding areas. Variability is assessed through the analysis of energy droughts (low-productivity periods). In addition, a sensitivity test is performed to find the optimal combination of PV (photovoltaic) and wind that reduce energy droughts and the persistence of that conditions at a local scale. A set of climate simulations from the MENA-CORDEX runs are used, in present and future climate (2046–2065, 2081–2100) for two different scenarios (RCP2.6, RCP8.5). Results show different changes in wind productivity depending on the scenario: a decrease in RCP2.6 and an increase in the RCP8.5. PV experienced a subtle decrease, with some exceptions. Changes in variability are small and the complementarity test shows that high shares of PV energy (above 50%) reduce both, energy droughts and the persistence of drought conditions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4104/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/8/4104/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 16 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4104/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/8/4104/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:IOP Publishing Authors: Molina, Maria Ofelia; Gutierrez, Claudia; Ortega, Maria; Sanchez, Enrique;Abstract Electricity demand for cooling and heating is directly related to weather and climate, primarily through ambient temperature. In Southern Europe, the maximum electricity demand for cooling in summer can be more pronounced than in winter, especially during heat wave (HW) episodes. With the growth of renewable technologies in the energy mix, the dependency of the electricity system on the weather is becoming evident not just from the demand side, but also from the energy supply side. From the resources point of view, summer wind presents a minimum on its annual cycle, so a combination of maximum electricity demand can coincide with a minimum of wind power production. This study presents a strong multidisciplinary focus, merging climate, energy and environmental discipline, due to their relevant connections in Southern Europe where important climate change stresses are expected. The combined anomalies of electricity demand and wind production during heat wave episodes are quantified at the country level, taking into account the HW extension. The summer period (1989-2019) of ERA5 reanalysis and E-OBS-21.0e data is used for atmospheric magnitudes and the Copernicus climate change service (C3S) energy dataset for demand. In heat wave events, an increase of 3.5%–10.6% in electricity demand and a decrease up to −30.8% in wind power production is obtained, with variability depending on the country. The greater the extension of the HW, the greater the anomalies. Different weather regimes related to heatwaves also play a role on this range of values. Therefore, the impact of extreme weather events, such as heatwaves, on wind power production in conditions of high electricity demand, should be considered in the energy supply strategy and planning in order to minimize the impact of these events on an electricity system with high penetration of renewables.
Environmental Resear... arrow_drop_down Environmental Research CommunicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7620/acec37&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Environmental Research CommunicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7620/acec37&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Elsevier BV Authors: Vara, Alba de la; Cabos Narvaez, William David; Gutiérrez Escribano, Claudia; Olcina, Jorge; +4 AuthorsVara, Alba de la; Cabos Narvaez, William David; Gutiérrez Escribano, Claudia; Olcina, Jorge; Matamoros, Alba; Pastor, Francisco; Khodayar, Samira; Ferrando, Maite;handle: 10017/62034
The Mediterranean Sea is a climate change hotspot since it provides a magnified warming signal. Heavily populated areas (e.g., Spanish Mediterranean coasts) are vulnerable to negative socio-economic impacts. This is particularly important for climate-related economic sectors such as coastal tourism, the focus of this paper. To promote a sustainable development of these activities and provide key information to stakeholders, it is necessary to anticipate changes in climate. Thus, it is fundamental to use climate modelling tools which account for air-sea interactions, which largely determine the climate signal of the Mediterranean coasts. In this paper, a set of regional air-sea coupled climate model simulations from Med-CORDEX are used to (i) study the climatic conditions on the Spanish Mediterranean coasts in the next decade(s) and (ii) to assess the possibility of extending the coastal tourist season towards spring-fall. We show that climate conditions are getting warmer and drier in the area, especially in summer. Heat waves and heavy precipitation will become more frequent. Thermal discomfort will increase in summer and summer conditions are extending towards spring and fall. Our work remarks the urgent need of adaptation measures of the sector, including the extension of the high tourist season to spring-fall, especially in the long term. We make a special effort to compile a set of adaptation measures for stakeholders. This study is part of the project ECOAZUL-MED, which aims to create a climate service tool to optimize the management of relevant sectors of the blue economy in the Spanish Mediterranean coasts. This publication is part of the project ECOAZUL-MED (PTQ2020-011287), funded by MCIN/AEI/10.13039/501100011033, and by “European Union NextGenerationEU/PRTR”. C. Gutiérrez and W. Cabos were supported by the National Ministry of Science “Proyectos de Generación de Conocimiento 2021” grant number PID2021-128656OB-I00. The Mediterranean Centre for Environmental Studies (CEAM) is partly supported by Generalitat Valenciana. The contribution of Samira Khodayar Pardo was supported by the program Generació Talent of Generalitat Valenciana (CIDEGENT/2018/017).
Climate Services arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteBiblioteca Digital de la Universidad de AlcaláArticle . 2024License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cliser.2024.100466&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 145visibility views 145 download downloads 24 Powered bymore_vert Climate Services arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteBiblioteca Digital de la Universidad de AlcaláArticle . 2024License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cliser.2024.100466&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Elsevier BV Authors: Perpiñán Lamigueiro, Óscar; Gutiérrez Escribano, Claudia; Gallardo Andrés, Clemente; Sánchez Sánchez, Enrique; +1 AuthorsPerpiñán Lamigueiro, Óscar; Gutiérrez Escribano, Claudia; Gallardo Andrés, Clemente; Sánchez Sánchez, Enrique; Gaertner Ruiz Valdepeñas, Miguel Ángel;handle: 10578/35618
Renewable energy resources are variable by nature. Due to this fact conventional electricity systems, which were designed for centralized generation, have to follow a different management approach when a big share of these technologies take part into the system. The space-time variability characteristics of solar radiation, wind and precipitation are very different and a detailed understanding of them is important for an adequate planning and management of the electricity system.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.09.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.09.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley María Ortega; Enrique Sánchez; Claudia Gutiérrez; María Ofelia Molina; Noelia López‐Franca;doi: 10.1002/joc.7860
AbstractCierzo in the Ebro Valley and Levante and Poniente in the Strait of Gibraltar are three of the main winds over the Iberian Peninsula. However, their study is difficult due to the limited amount of observational data and available literature. In addition, current reanalysis products do not usually have sufficient resolution, generally greater than 10 km, to capture the orographic characteristics of these winds. In this study we explore the ability of high‐resolution COSMO‐REA6 reanalysis (6 km, 0.055°) to describe Cierzo, Levante and Poniente using HadISD observational data validation whenever it was possible. A numerical definition according to the characteristics of these winds is proposed through speed and directional range thresholds. Regional winds statistics, annual cycles, wind roses and covered areas are calculated. The results show a reasonable agreement between reanalysis and observations, with an annual average of 95 Cierzo days, and around 80 Levante and Poniente days for the whole period. These windy days typically extend around 21,000 km2 (or 600 reanalysis cells). Both extension and number of days present strong annual cycles and interannual variability. Several weather regimes associated to those regional wind days are obtained, in agreement with other comparable studies. Therefore, the study shows the capability of the high‐resolution COSMO‐REA6 reanalysis to capture and describe regional winds such as Cierzo, Levante and Poniente.
International Journa... arrow_drop_down International Journal of ClimatologyArticle . 2022 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/joc.7860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of ClimatologyArticle . 2022 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/joc.7860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Funded by:EC | SOCLIMPACTEC| SOCLIMPACTAuthors: de la Vara, Alba; Gutiérrez, Claudia; González-Alemán, Juan Jesús; Gaertner, Miguel Ángel;The enhanced vulnerability of insular regions to climate change has been recently recognized by the European Union, which highlights the importance of undertaking adaptation and mitigation strategies according to the specific singularities of the islands. In general, islands are highly dependent on energy imports which, in turn, feature a marked seasonal demand. Efforts to reduce greenhouse gas emissions in these regions can therefore fulfill a twofold objective: (i) to increase the renewable energy share for global decarbonization and (ii) to reduce the external energy dependence for isolated (or interconnected) systems in which this can only be achieved with an increase of the renewable energy share. However, the increase in renewable technologies makes energy generation more dependent on future climate and its variability. The main aim of this study is to analyze future projections of wind and photovoltaic potential, as well as energy productivity droughts, on the main Euro-Mediterranean islands. Due to the limitations in land surface available in the islands for the installation of renewable energy capacity, the analysis is extended to offshore wind and photovoltaic energy, which may have an important role in the future increases of renewable energy share. To that end, we use climate variables from a series of simulations derived from Euro-CORDEX (Coordinated Downscaling Experiment) simulations for the RCP2.6 and RCP8.5 emission scenarios. A special effort is performed to normalize projected changes and the associated uncertainties. The obtained normalized changes make it easier the intercomparison between the results obtained in the different islands and constitute condensed and valuable information that aims to facilitate climate-related policy decision making for decarbonization and Blue Growth in the islands.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4433/11/10/1036/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos11101036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 14 Powered bymore_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4433/11/10/1036/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos11101036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:IOP Publishing Authors: López-Franca, Noelia; Gaertner, Miguel Ángel; Gutiérrez, Claudia; Gallardo, Clemente; +3 AuthorsLópez-Franca, Noelia; Gaertner, Miguel Ángel; Gutiérrez, Claudia; Gallardo, Clemente; Sánchez, Enrique; Molina, María Ofelia; Ortega, María;handle: 10578/35208
Abstract The advances in floating offshore wind energy are opening deep sea areas, like the coastal waters of Iberian Peninsula (IP), for the installation of wind farms. The integration of this new energy source in a semi-closed power system with an already high share of variable renewable energies would be facilitated if the potential contribution of offshore wind energy shows reduced variability and limited seasonal variations, as the power demand in IP shows two maxima in winter and summer. The aims of this study are the analysis of temporal variability and spatial complementarity of the potential installation sites, and the identification of an optimal combination of installation areas that minimizes the temporal variability of the aggregated offshore contribution. In order to better capture the marked mesoscale features of winds around the IP, wind data from a very high resolution reanalysis (COSMO-REA6) are used. The analysis considers allowed areas for installation, delimited by the maritime spatial planning. Northern coast areas are characterized by high capacity factors (CFs) and high seasonality, while the lower CFs at the western and southern coasts are compensated by a limited seasonality. Pairwise correlation between the potential areas shows outstanding results, with several negative correlation values within a synoptic scale region, in contrast to other mid-latitude regions like the North Sea or the Eastern USA coast. An optimal aggregation of areas includes at least one area at each of the four main Iberian coasts. A strong reduction of hourly variability is obtained through the resulting combinations, and the seasonality of the aggregated CF is clearly below the values for other offshore areas. Therefore, offshore wind energy can indeed offer an added value for the Iberian power system beyond the high resource amount, reducing the need for storage or backup plants.
Environmental Resear... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acffde&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acffde&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 09 Oct 2024 France, Belgium, Spain, Switzerland, Spain, Germany, Ireland, Belgium, Spain, Spain, Croatia, Denmark, Spain, Germany, Germany, Italy, Croatia, SpainPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:HRZZ | Climate of the Adriatic R...HRZZ| Climate of the Adriatic REgion in its global contextJacob, Daniela; Teichmann, Claas; Sobolowski, Stefan; Katragkou, Eleni; Anders, Ivonne; Belda, Michal; Benestad, Rasmus; Boberg, Fredrik; Buonomo, Erasmo; Cardoso, Rita M.; Casanueva, Ana; Christensen, Ole B.; Christensen, Jens Hesselbjerg; Coppola, Erika; De Cruz, Lesley; Davin, Edouard L.; Dobler, Andreas; Domínguez, Marta; Fealy, Rowan; Fernandez, Jesus; Gaertner, Miguel Angel; García-Díez, Markel; Giorgi, Filippo; Gobiet, Andreas; Goergen, Klaus; Gómez-Navarro, Juan José; Alemán, Juan Jesús González; Gutiérrez, Claudia; Gutiérrez, José M.; Güttler, Ivan; Haensler, Andreas; Halenka, Tomáš; Jerez, Sonia; Jiménez-Guerrero, Pedro; Jones, Richard G.; Keuler, Klaus; Kjellström, Erik; Knist, Sebastian; Kotlarski, Sven; Maraun, Douglas; van Meijgaard, Erik; Mercogliano, Paola; Montávez, Juan Pedro; Navarra, Antonio; Nikulin, Grigory; de Noblet-Ducoudré, Nathalie; Panitz, Hans-Juergen; Pfeifer, Susanne; Piazza, Marie; Pichelli, Emanuela; Pietikäinen, Joni-Pekka; Prein, Andreas F.; Preuschmann, Swantje; Rechid, Diana; Rockel, Burkhardt; Romera, Raquel; Sánchez, Enrique; Sieck, Kevin; Soares, Pedro M. M.; Somot, Samuel; Srnec, Lidija; Sørland, Silje Lund; Termonia, Piet; Truhetz, Heimo; Vautard, Robert; Warrach-Sagi, Kirsten; Wulfmeyer, Volker; Jacob, Daniela; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Teichmann, Claas; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Sobolowski, Stefan; NORCE Norwegian Research Centre, The Bjerknes Centre for Climate Research, Bergen, Norway; Katragkou, Eleni; Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece; Anders, Ivonne; Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria; Belda, Michal; Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; Benestad, Rasmus; The Norwegian Meteorological Institute, Oslo, Norway; Boberg, Fredrik; Danish Meteorological Institute (DMI), Copenhagen, Denmark; Buonomo, Erasmo; School of Geography and the Environment, University of Oxford, Oxford, UK; Cardoso, Rita M.; Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Casanueva, Ana; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Christensen, Ole B.; Danish Meteorological Institute (DMI), Copenhagen, Denmark; Christensen, Jens Hesselbjerg; Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark; Coppola, Erika; International Centre for Theoretical Physics (ICTP), Trieste, Italy; De Cruz, Lesley; Royal Meteorological Institute of Belgium (RMIB), Brussels, Belgium; Davin, Edouard L.; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland; Dobler, Andreas; The Norwegian Meteorological Institute, Oslo, Norway; Domínguez, Marta; Agencia Estatal de Meteorología, Madrid, Spain; Fealy, Rowan; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Fernandez, Jesus; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Gaertner, Miguel Angel; University of Castilla-La Mancha, Toledo, Spain; García-Díez, Markel; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Giorgi, Filippo; International Centre for Theoretical Physics (ICTP), Trieste, Italy; Gobiet, Andreas; Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria; Goergen, Klaus; Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany; Gómez-Navarro, Juan José; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Alemán, Juan Jesús González; University of Castilla-La Mancha, Toledo, Spain; Gutiérrez, Claudia; University of Castilla-La Mancha, Toledo, Spain; Gutiérrez, José M.; Meteorology Group, Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Santander, Spain; Güttler, Ivan; Croatian Meteorological and Hydrological Service, Zagreb, Croatia; Haensler, Andreas; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Halenka, Tomáš; Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; Jerez, Sonia; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Jiménez-Guerrero, Pedro; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Jones, Richard G.; Met Office Hadley Centre, Exeter, UK; Keuler, Klaus; Chair of Atmospheric Processes, Brandenburg University of Technology Cottbus - Senftenberg, Cottbus, Germany; Kjellström, Erik; Swedish Meteorological and Hydrological Institute, Norrköping, Sweden; Knist, Sebastian; Meteorological Institute, University of Bonn, Bonn, Germany; Kotlarski, Sven; Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Switzerland; Maraun, Douglas; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; van Meijgaard, Erik; Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands; Mercogliano, Paola; C.I.R.A., Capua, Italy; Montávez, Juan Pedro; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Navarra, Antonio; Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce, Italy; Nikulin, Grigory; Swedish Meteorological and Hydrological Institute, Norrköping, Sweden; de Noblet-Ducoudré, Nathalie; Laboratoire des Sciences du Climat et de l’Environnement, IPSL, Unité Mixte CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette cédex, France; Panitz, Hans-Juergen; Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany; Pfeifer, Susanne; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Piazza, Marie; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; Pichelli, Emanuela; International Centre for Theoretical Physics (ICTP), Trieste, Italy; Pietikäinen, Joni-Pekka; Finnish Meteorological Institute (FMI), Helsinki, Finland; Prein, Andreas F.; National Center for Atmospheric Research, Boulder, USA; Preuschmann, Swantje; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Rechid, Diana; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Rockel, Burkhardt; Helmholtz-Zentrum Geesthacht, Geesthacht, Germany; Romera, Raquel; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Sánchez, Enrique; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Sieck, Kevin; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Soares, Pedro M. M.; Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Somot, Samuel; CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France; Srnec, Lidija; Croatian Meteorological and Hydrological Service, Zagreb, Croatia; Sørland, Silje Lund; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland; Termonia, Piet; Department of Physics and Astronomy, Ghent University, Ghent, Belgium; Truhetz, Heimo; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; Vautard, Robert; Laboratoire des Sciences du Climat et de l’Environnement, IPSL, Unité Mixte CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette cédex, France; Warrach-Sagi, Kirsten; Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany; Wulfmeyer, Volker; Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany;AbstractThe European CORDEX (EURO-CORDEX) initiative is a large voluntary effort that seeks to advance regional climate and Earth system science in Europe. As part of the World Climate Research Programme (WCRP) - Coordinated Regional Downscaling Experiment (CORDEX), it shares the broader goals of providing a model evaluation and climate projection framework and improving communication with both the General Circulation Model (GCM) and climate data user communities. EURO-CORDEX oversees the design and coordination of ongoing ensembles of regional climate projections of unprecedented size and resolution (0.11° EUR-11 and 0.44° EUR-44 domains). Additionally, the inclusion of empirical-statistical downscaling allows investigation of much larger multi-model ensembles. These complementary approaches provide a foundation for scientific studies within the climate research community and others. The value of the EURO-CORDEX ensemble is shown via numerous peer-reviewed studies and its use in the development of climate services. Evaluations of the EUR-44 and EUR-11 ensembles also show the benefits of higher resolution. However, significant challenges remain. To further advance scientific understanding, two flagship pilot studies (FPS) were initiated. The first investigates local-regional phenomena at convection-permitting scales over central Europe and the Mediterranean in collaboration with the Med-CORDEX community. The second investigates the impacts of land cover changes on European climate across spatial and temporal scales. Over the coming years, the EURO-CORDEX community looks forward to closer collaboration with other communities, new advances, supporting international initiatives such as the IPCC reports, and continuing to provide the basis for research on regional climate impacts and adaptation in Europe.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)MURAL - Maynooth University Research Archive LibraryArticle . 2020 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 287 citations 287 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 573visibility views 573 download downloads 627 Powered bymore_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)MURAL - Maynooth University Research Archive LibraryArticle . 2020 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Elsevier BV Funded by:EC | SOCLIMPACTEC| SOCLIMPACTGutiérrez, Claudia; Somot, Samuel; Nabat, Pierre; Mallet, Marc; Gaertner, Miguel Ángel; Perpiñán, Oscar;Abstract The increase in the photovoltaic energy installed capacity over the world leads to the need of a better understanding of solar resource and its variability. The aim of this work is to assess the influence of aerosols on photovoltaic energy production from seasonal to multi-decadal time scales. For this purpose we use various coupled aerosol-climate simulations that take into account the complex spatial and temporal patterns of natural and anthropogenic aerosols over the Euro-Mediterranean domain. The results show that aerosols strongly influence the spatial pattern, seasonal cycle and long-term trend of PV production. The most affected area is Central Europe where sensitivity of PV production to aerosols is higher. The annual production loss due to aerosols ranges from no impact to - 16 % in The Netherlands, with variation depending on the area and on the typology of the tracking system. The summer production loss can even reach - 20 % over regions of Africa and Syria-Iraq. We conclude that aerosols cannot be neglected in the assessment of PV production at large time scales over the Euro-Mediterranean area. Besides, the potential increase in energy due to reduction in the anthropogenic aerosols is shown in the simulation of the brightening period over Europe, with an increase of 2000 kW h kWp in a PV lifetime for the most affected areas. It illustrates the evolution that PV potential could follow in highly polluted areas through the effective implementation of pollution control measures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.09.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.09.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Molina, Maria; Gutierrez, Claudia; Sanchez, Enrique;doi: 10.1002/joc.7103
AbstractUnderstanding space–time features of wind speed is of high interest in meteorology and several applied sciences. Accurate wind speed measurements in combination with reliable gridded products, such as reanalyses, are needed to address the main characteristics of the wind field. Hourly 10 m wind speed from the European Centre for Medium‐Range Weather Forecasts (ECMWF) latest reanalysis (ERA5) is compared with HadISD wind observations from 245 stations across Europe. Averaged ERA5 hourly data is able to reproduce the annual cycle of monthly wind speed in Europe. ERA5 presents slightly larger (shorter) monthly medians in winter (summer) than observations. ERA5 is compared against observations for each station using a frequency distribution‐based score (score, from 0 to 1). Most of the stations exhibit hourly scores ranging from 0.8 to 0.9, indicating that ERA5 is able to reproduce the wind speed spectrum range, from light to strong relative frequencies, for any location over Europe. Ranges of mean values, variability, distribution function parameters and high or low wind thresholds frequencies are shown for this ensemble of European stations, allowing for an overall description of wind features. Generally, there is no clear relationship between scores and the variables analysed. The correlation and scores between ERA5 and HadISD is even further increased at longer time frequencies (6–24 hourly), together with centred root‐mean‐square error (RMSE) and standard deviation decreases. Hourly wind data from ERA5 reanalysis is, despite some shortcomings, valuable information to perform further detailed studies with a regular spatial and time wind distribution, from the climatological or renewable energy perspectives, for example.
International Journa... arrow_drop_down International Journal of ClimatologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/joc.7103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of ClimatologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/joc.7103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 SpainPublisher:MDPI AG Funded by:EC | SOCLIMPACTEC| SOCLIMPACTAuthors: Gutiérrez, Claudia; de la Vara, Alba; González-Alemán, Juan Jesús; Gaertner, Miguel Angel;doi: 10.3390/su13084104
handle: 20.500.14352/7413
The progressive energy transition to systems with higher shares of renewable energy is particularly important in islands regions, which are largely dependent on energy imports. In this context, to assess the impact of climate change on renewable energy resources during the 21st century is crucial for polycimakers and stakeholders. In this work, we provide an overview of wind and photovoltaic (PV) resources, its variability and complementarity between them, as well as their future changes, in the Canary Islands and surrounding areas. Variability is assessed through the analysis of energy droughts (low-productivity periods). In addition, a sensitivity test is performed to find the optimal combination of PV (photovoltaic) and wind that reduce energy droughts and the persistence of that conditions at a local scale. A set of climate simulations from the MENA-CORDEX runs are used, in present and future climate (2046–2065, 2081–2100) for two different scenarios (RCP2.6, RCP8.5). Results show different changes in wind productivity depending on the scenario: a decrease in RCP2.6 and an increase in the RCP8.5. PV experienced a subtle decrease, with some exceptions. Changes in variability are small and the complementarity test shows that high shares of PV energy (above 50%) reduce both, energy droughts and the persistence of drought conditions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4104/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/8/4104/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 16 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4104/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/8/4104/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:IOP Publishing Authors: Molina, Maria Ofelia; Gutierrez, Claudia; Ortega, Maria; Sanchez, Enrique;Abstract Electricity demand for cooling and heating is directly related to weather and climate, primarily through ambient temperature. In Southern Europe, the maximum electricity demand for cooling in summer can be more pronounced than in winter, especially during heat wave (HW) episodes. With the growth of renewable technologies in the energy mix, the dependency of the electricity system on the weather is becoming evident not just from the demand side, but also from the energy supply side. From the resources point of view, summer wind presents a minimum on its annual cycle, so a combination of maximum electricity demand can coincide with a minimum of wind power production. This study presents a strong multidisciplinary focus, merging climate, energy and environmental discipline, due to their relevant connections in Southern Europe where important climate change stresses are expected. The combined anomalies of electricity demand and wind production during heat wave episodes are quantified at the country level, taking into account the HW extension. The summer period (1989-2019) of ERA5 reanalysis and E-OBS-21.0e data is used for atmospheric magnitudes and the Copernicus climate change service (C3S) energy dataset for demand. In heat wave events, an increase of 3.5%–10.6% in electricity demand and a decrease up to −30.8% in wind power production is obtained, with variability depending on the country. The greater the extension of the HW, the greater the anomalies. Different weather regimes related to heatwaves also play a role on this range of values. Therefore, the impact of extreme weather events, such as heatwaves, on wind power production in conditions of high electricity demand, should be considered in the energy supply strategy and planning in order to minimize the impact of these events on an electricity system with high penetration of renewables.
Environmental Resear... arrow_drop_down Environmental Research CommunicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7620/acec37&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Environmental Research CommunicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7620/acec37&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Elsevier BV Authors: Vara, Alba de la; Cabos Narvaez, William David; Gutiérrez Escribano, Claudia; Olcina, Jorge; +4 AuthorsVara, Alba de la; Cabos Narvaez, William David; Gutiérrez Escribano, Claudia; Olcina, Jorge; Matamoros, Alba; Pastor, Francisco; Khodayar, Samira; Ferrando, Maite;handle: 10017/62034
The Mediterranean Sea is a climate change hotspot since it provides a magnified warming signal. Heavily populated areas (e.g., Spanish Mediterranean coasts) are vulnerable to negative socio-economic impacts. This is particularly important for climate-related economic sectors such as coastal tourism, the focus of this paper. To promote a sustainable development of these activities and provide key information to stakeholders, it is necessary to anticipate changes in climate. Thus, it is fundamental to use climate modelling tools which account for air-sea interactions, which largely determine the climate signal of the Mediterranean coasts. In this paper, a set of regional air-sea coupled climate model simulations from Med-CORDEX are used to (i) study the climatic conditions on the Spanish Mediterranean coasts in the next decade(s) and (ii) to assess the possibility of extending the coastal tourist season towards spring-fall. We show that climate conditions are getting warmer and drier in the area, especially in summer. Heat waves and heavy precipitation will become more frequent. Thermal discomfort will increase in summer and summer conditions are extending towards spring and fall. Our work remarks the urgent need of adaptation measures of the sector, including the extension of the high tourist season to spring-fall, especially in the long term. We make a special effort to compile a set of adaptation measures for stakeholders. This study is part of the project ECOAZUL-MED, which aims to create a climate service tool to optimize the management of relevant sectors of the blue economy in the Spanish Mediterranean coasts. This publication is part of the project ECOAZUL-MED (PTQ2020-011287), funded by MCIN/AEI/10.13039/501100011033, and by “European Union NextGenerationEU/PRTR”. C. Gutiérrez and W. Cabos were supported by the National Ministry of Science “Proyectos de Generación de Conocimiento 2021” grant number PID2021-128656OB-I00. The Mediterranean Centre for Environmental Studies (CEAM) is partly supported by Generalitat Valenciana. The contribution of Samira Khodayar Pardo was supported by the program Generació Talent of Generalitat Valenciana (CIDEGENT/2018/017).
Climate Services arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteBiblioteca Digital de la Universidad de AlcaláArticle . 2024License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cliser.2024.100466&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 145visibility views 145 download downloads 24 Powered bymore_vert Climate Services arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteBiblioteca Digital de la Universidad de AlcaláArticle . 2024License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cliser.2024.100466&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Elsevier BV Authors: Perpiñán Lamigueiro, Óscar; Gutiérrez Escribano, Claudia; Gallardo Andrés, Clemente; Sánchez Sánchez, Enrique; +1 AuthorsPerpiñán Lamigueiro, Óscar; Gutiérrez Escribano, Claudia; Gallardo Andrés, Clemente; Sánchez Sánchez, Enrique; Gaertner Ruiz Valdepeñas, Miguel Ángel;handle: 10578/35618
Renewable energy resources are variable by nature. Due to this fact conventional electricity systems, which were designed for centralized generation, have to follow a different management approach when a big share of these technologies take part into the system. The space-time variability characteristics of solar radiation, wind and precipitation are very different and a detailed understanding of them is important for an adequate planning and management of the electricity system.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.09.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.09.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley María Ortega; Enrique Sánchez; Claudia Gutiérrez; María Ofelia Molina; Noelia López‐Franca;doi: 10.1002/joc.7860
AbstractCierzo in the Ebro Valley and Levante and Poniente in the Strait of Gibraltar are three of the main winds over the Iberian Peninsula. However, their study is difficult due to the limited amount of observational data and available literature. In addition, current reanalysis products do not usually have sufficient resolution, generally greater than 10 km, to capture the orographic characteristics of these winds. In this study we explore the ability of high‐resolution COSMO‐REA6 reanalysis (6 km, 0.055°) to describe Cierzo, Levante and Poniente using HadISD observational data validation whenever it was possible. A numerical definition according to the characteristics of these winds is proposed through speed and directional range thresholds. Regional winds statistics, annual cycles, wind roses and covered areas are calculated. The results show a reasonable agreement between reanalysis and observations, with an annual average of 95 Cierzo days, and around 80 Levante and Poniente days for the whole period. These windy days typically extend around 21,000 km2 (or 600 reanalysis cells). Both extension and number of days present strong annual cycles and interannual variability. Several weather regimes associated to those regional wind days are obtained, in agreement with other comparable studies. Therefore, the study shows the capability of the high‐resolution COSMO‐REA6 reanalysis to capture and describe regional winds such as Cierzo, Levante and Poniente.
International Journa... arrow_drop_down International Journal of ClimatologyArticle . 2022 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/joc.7860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of ClimatologyArticle . 2022 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/joc.7860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Funded by:EC | SOCLIMPACTEC| SOCLIMPACTAuthors: de la Vara, Alba; Gutiérrez, Claudia; González-Alemán, Juan Jesús; Gaertner, Miguel Ángel;The enhanced vulnerability of insular regions to climate change has been recently recognized by the European Union, which highlights the importance of undertaking adaptation and mitigation strategies according to the specific singularities of the islands. In general, islands are highly dependent on energy imports which, in turn, feature a marked seasonal demand. Efforts to reduce greenhouse gas emissions in these regions can therefore fulfill a twofold objective: (i) to increase the renewable energy share for global decarbonization and (ii) to reduce the external energy dependence for isolated (or interconnected) systems in which this can only be achieved with an increase of the renewable energy share. However, the increase in renewable technologies makes energy generation more dependent on future climate and its variability. The main aim of this study is to analyze future projections of wind and photovoltaic potential, as well as energy productivity droughts, on the main Euro-Mediterranean islands. Due to the limitations in land surface available in the islands for the installation of renewable energy capacity, the analysis is extended to offshore wind and photovoltaic energy, which may have an important role in the future increases of renewable energy share. To that end, we use climate variables from a series of simulations derived from Euro-CORDEX (Coordinated Downscaling Experiment) simulations for the RCP2.6 and RCP8.5 emission scenarios. A special effort is performed to normalize projected changes and the associated uncertainties. The obtained normalized changes make it easier the intercomparison between the results obtained in the different islands and constitute condensed and valuable information that aims to facilitate climate-related policy decision making for decarbonization and Blue Growth in the islands.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4433/11/10/1036/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos11101036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 14 Powered bymore_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4433/11/10/1036/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos11101036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:IOP Publishing Authors: López-Franca, Noelia; Gaertner, Miguel Ángel; Gutiérrez, Claudia; Gallardo, Clemente; +3 AuthorsLópez-Franca, Noelia; Gaertner, Miguel Ángel; Gutiérrez, Claudia; Gallardo, Clemente; Sánchez, Enrique; Molina, María Ofelia; Ortega, María;handle: 10578/35208
Abstract The advances in floating offshore wind energy are opening deep sea areas, like the coastal waters of Iberian Peninsula (IP), for the installation of wind farms. The integration of this new energy source in a semi-closed power system with an already high share of variable renewable energies would be facilitated if the potential contribution of offshore wind energy shows reduced variability and limited seasonal variations, as the power demand in IP shows two maxima in winter and summer. The aims of this study are the analysis of temporal variability and spatial complementarity of the potential installation sites, and the identification of an optimal combination of installation areas that minimizes the temporal variability of the aggregated offshore contribution. In order to better capture the marked mesoscale features of winds around the IP, wind data from a very high resolution reanalysis (COSMO-REA6) are used. The analysis considers allowed areas for installation, delimited by the maritime spatial planning. Northern coast areas are characterized by high capacity factors (CFs) and high seasonality, while the lower CFs at the western and southern coasts are compensated by a limited seasonality. Pairwise correlation between the potential areas shows outstanding results, with several negative correlation values within a synoptic scale region, in contrast to other mid-latitude regions like the North Sea or the Eastern USA coast. An optimal aggregation of areas includes at least one area at each of the four main Iberian coasts. A strong reduction of hourly variability is obtained through the resulting combinations, and the seasonality of the aggregated CF is clearly below the values for other offshore areas. Therefore, offshore wind energy can indeed offer an added value for the Iberian power system beyond the high resource amount, reducing the need for storage or backup plants.
Environmental Resear... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acffde&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acffde&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 09 Oct 2024 France, Belgium, Spain, Switzerland, Spain, Germany, Ireland, Belgium, Spain, Spain, Croatia, Denmark, Spain, Germany, Germany, Italy, Croatia, SpainPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:HRZZ | Climate of the Adriatic R...HRZZ| Climate of the Adriatic REgion in its global contextJacob, Daniela; Teichmann, Claas; Sobolowski, Stefan; Katragkou, Eleni; Anders, Ivonne; Belda, Michal; Benestad, Rasmus; Boberg, Fredrik; Buonomo, Erasmo; Cardoso, Rita M.; Casanueva, Ana; Christensen, Ole B.; Christensen, Jens Hesselbjerg; Coppola, Erika; De Cruz, Lesley; Davin, Edouard L.; Dobler, Andreas; Domínguez, Marta; Fealy, Rowan; Fernandez, Jesus; Gaertner, Miguel Angel; García-Díez, Markel; Giorgi, Filippo; Gobiet, Andreas; Goergen, Klaus; Gómez-Navarro, Juan José; Alemán, Juan Jesús González; Gutiérrez, Claudia; Gutiérrez, José M.; Güttler, Ivan; Haensler, Andreas; Halenka, Tomáš; Jerez, Sonia; Jiménez-Guerrero, Pedro; Jones, Richard G.; Keuler, Klaus; Kjellström, Erik; Knist, Sebastian; Kotlarski, Sven; Maraun, Douglas; van Meijgaard, Erik; Mercogliano, Paola; Montávez, Juan Pedro; Navarra, Antonio; Nikulin, Grigory; de Noblet-Ducoudré, Nathalie; Panitz, Hans-Juergen; Pfeifer, Susanne; Piazza, Marie; Pichelli, Emanuela; Pietikäinen, Joni-Pekka; Prein, Andreas F.; Preuschmann, Swantje; Rechid, Diana; Rockel, Burkhardt; Romera, Raquel; Sánchez, Enrique; Sieck, Kevin; Soares, Pedro M. M.; Somot, Samuel; Srnec, Lidija; Sørland, Silje Lund; Termonia, Piet; Truhetz, Heimo; Vautard, Robert; Warrach-Sagi, Kirsten; Wulfmeyer, Volker; Jacob, Daniela; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Teichmann, Claas; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Sobolowski, Stefan; NORCE Norwegian Research Centre, The Bjerknes Centre for Climate Research, Bergen, Norway; Katragkou, Eleni; Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece; Anders, Ivonne; Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria; Belda, Michal; Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; Benestad, Rasmus; The Norwegian Meteorological Institute, Oslo, Norway; Boberg, Fredrik; Danish Meteorological Institute (DMI), Copenhagen, Denmark; Buonomo, Erasmo; School of Geography and the Environment, University of Oxford, Oxford, UK; Cardoso, Rita M.; Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Casanueva, Ana; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Christensen, Ole B.; Danish Meteorological Institute (DMI), Copenhagen, Denmark; Christensen, Jens Hesselbjerg; Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark; Coppola, Erika; International Centre for Theoretical Physics (ICTP), Trieste, Italy; De Cruz, Lesley; Royal Meteorological Institute of Belgium (RMIB), Brussels, Belgium; Davin, Edouard L.; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland; Dobler, Andreas; The Norwegian Meteorological Institute, Oslo, Norway; Domínguez, Marta; Agencia Estatal de Meteorología, Madrid, Spain; Fealy, Rowan; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Fernandez, Jesus; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Gaertner, Miguel Angel; University of Castilla-La Mancha, Toledo, Spain; García-Díez, Markel; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Giorgi, Filippo; International Centre for Theoretical Physics (ICTP), Trieste, Italy; Gobiet, Andreas; Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria; Goergen, Klaus; Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany; Gómez-Navarro, Juan José; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Alemán, Juan Jesús González; University of Castilla-La Mancha, Toledo, Spain; Gutiérrez, Claudia; University of Castilla-La Mancha, Toledo, Spain; Gutiérrez, José M.; Meteorology Group, Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Santander, Spain; Güttler, Ivan; Croatian Meteorological and Hydrological Service, Zagreb, Croatia; Haensler, Andreas; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Halenka, Tomáš; Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; Jerez, Sonia; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Jiménez-Guerrero, Pedro; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Jones, Richard G.; Met Office Hadley Centre, Exeter, UK; Keuler, Klaus; Chair of Atmospheric Processes, Brandenburg University of Technology Cottbus - Senftenberg, Cottbus, Germany; Kjellström, Erik; Swedish Meteorological and Hydrological Institute, Norrköping, Sweden; Knist, Sebastian; Meteorological Institute, University of Bonn, Bonn, Germany; Kotlarski, Sven; Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Switzerland; Maraun, Douglas; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; van Meijgaard, Erik; Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands; Mercogliano, Paola; C.I.R.A., Capua, Italy; Montávez, Juan Pedro; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Navarra, Antonio; Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce, Italy; Nikulin, Grigory; Swedish Meteorological and Hydrological Institute, Norrköping, Sweden; de Noblet-Ducoudré, Nathalie; Laboratoire des Sciences du Climat et de l’Environnement, IPSL, Unité Mixte CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette cédex, France; Panitz, Hans-Juergen; Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany; Pfeifer, Susanne; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Piazza, Marie; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; Pichelli, Emanuela; International Centre for Theoretical Physics (ICTP), Trieste, Italy; Pietikäinen, Joni-Pekka; Finnish Meteorological Institute (FMI), Helsinki, Finland; Prein, Andreas F.; National Center for Atmospheric Research, Boulder, USA; Preuschmann, Swantje; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Rechid, Diana; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Rockel, Burkhardt; Helmholtz-Zentrum Geesthacht, Geesthacht, Germany; Romera, Raquel; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Sánchez, Enrique; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Sieck, Kevin; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Soares, Pedro M. M.; Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Somot, Samuel; CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France; Srnec, Lidija; Croatian Meteorological and Hydrological Service, Zagreb, Croatia; Sørland, Silje Lund; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland; Termonia, Piet; Department of Physics and Astronomy, Ghent University, Ghent, Belgium; Truhetz, Heimo; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; Vautard, Robert; Laboratoire des Sciences du Climat et de l’Environnement, IPSL, Unité Mixte CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette cédex, France; Warrach-Sagi, Kirsten; Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany; Wulfmeyer, Volker; Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany;AbstractThe European CORDEX (EURO-CORDEX) initiative is a large voluntary effort that seeks to advance regional climate and Earth system science in Europe. As part of the World Climate Research Programme (WCRP) - Coordinated Regional Downscaling Experiment (CORDEX), it shares the broader goals of providing a model evaluation and climate projection framework and improving communication with both the General Circulation Model (GCM) and climate data user communities. EURO-CORDEX oversees the design and coordination of ongoing ensembles of regional climate projections of unprecedented size and resolution (0.11° EUR-11 and 0.44° EUR-44 domains). Additionally, the inclusion of empirical-statistical downscaling allows investigation of much larger multi-model ensembles. These complementary approaches provide a foundation for scientific studies within the climate research community and others. The value of the EURO-CORDEX ensemble is shown via numerous peer-reviewed studies and its use in the development of climate services. Evaluations of the EUR-44 and EUR-11 ensembles also show the benefits of higher resolution. However, significant challenges remain. To further advance scientific understanding, two flagship pilot studies (FPS) were initiated. The first investigates local-regional phenomena at convection-permitting scales over central Europe and the Mediterranean in collaboration with the Med-CORDEX community. The second investigates the impacts of land cover changes on European climate across spatial and temporal scales. Over the coming years, the EURO-CORDEX community looks forward to closer collaboration with other communities, new advances, supporting international initiatives such as the IPCC reports, and continuing to provide the basis for research on regional climate impacts and adaptation in Europe.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)MURAL - Maynooth University Research Archive LibraryArticle . 2020 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 287 citations 287 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 573visibility views 573 download downloads 627 Powered bymore_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)MURAL - Maynooth University Research Archive LibraryArticle . 2020 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Elsevier BV Funded by:EC | SOCLIMPACTEC| SOCLIMPACTGutiérrez, Claudia; Somot, Samuel; Nabat, Pierre; Mallet, Marc; Gaertner, Miguel Ángel; Perpiñán, Oscar;Abstract The increase in the photovoltaic energy installed capacity over the world leads to the need of a better understanding of solar resource and its variability. The aim of this work is to assess the influence of aerosols on photovoltaic energy production from seasonal to multi-decadal time scales. For this purpose we use various coupled aerosol-climate simulations that take into account the complex spatial and temporal patterns of natural and anthropogenic aerosols over the Euro-Mediterranean domain. The results show that aerosols strongly influence the spatial pattern, seasonal cycle and long-term trend of PV production. The most affected area is Central Europe where sensitivity of PV production to aerosols is higher. The annual production loss due to aerosols ranges from no impact to - 16 % in The Netherlands, with variation depending on the area and on the typology of the tracking system. The summer production loss can even reach - 20 % over regions of Africa and Syria-Iraq. We conclude that aerosols cannot be neglected in the assessment of PV production at large time scales over the Euro-Mediterranean area. Besides, the potential increase in energy due to reduction in the anthropogenic aerosols is shown in the simulation of the brightening period over Europe, with an increase of 2000 kW h kWp in a PV lifetime for the most affected areas. It illustrates the evolution that PV potential could follow in highly polluted areas through the effective implementation of pollution control measures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.09.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.09.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Molina, Maria; Gutierrez, Claudia; Sanchez, Enrique;doi: 10.1002/joc.7103
AbstractUnderstanding space–time features of wind speed is of high interest in meteorology and several applied sciences. Accurate wind speed measurements in combination with reliable gridded products, such as reanalyses, are needed to address the main characteristics of the wind field. Hourly 10 m wind speed from the European Centre for Medium‐Range Weather Forecasts (ECMWF) latest reanalysis (ERA5) is compared with HadISD wind observations from 245 stations across Europe. Averaged ERA5 hourly data is able to reproduce the annual cycle of monthly wind speed in Europe. ERA5 presents slightly larger (shorter) monthly medians in winter (summer) than observations. ERA5 is compared against observations for each station using a frequency distribution‐based score (score, from 0 to 1). Most of the stations exhibit hourly scores ranging from 0.8 to 0.9, indicating that ERA5 is able to reproduce the wind speed spectrum range, from light to strong relative frequencies, for any location over Europe. Ranges of mean values, variability, distribution function parameters and high or low wind thresholds frequencies are shown for this ensemble of European stations, allowing for an overall description of wind features. Generally, there is no clear relationship between scores and the variables analysed. The correlation and scores between ERA5 and HadISD is even further increased at longer time frequencies (6–24 hourly), together with centred root‐mean‐square error (RMSE) and standard deviation decreases. Hourly wind data from ERA5 reanalysis is, despite some shortcomings, valuable information to perform further detailed studies with a regular spatial and time wind distribution, from the climatological or renewable energy perspectives, for example.
International Journa... arrow_drop_down International Journal of ClimatologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/joc.7103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of ClimatologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/joc.7103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu