- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 28 Jul 2021 Australia, Australia, Germany, Switzerland, Finland, France, United Kingdom, France, United Kingdom, France, United Kingdom, Czech Republic, France, AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | MONOSTAREC| MONOSTARKurt Nicolussi; Vladimir S. Myglan; Markus Stoffel; Bao Yang; Bao Yang; Kristina Seftigen; Kristina Seftigen; Paul J. Krusic; Paul J. Krusic; Josef Ludescher; Jan Esper; Jianglin Wang; Jianglin Wang; Alexander V. Kirdyanov; Alexander V. Kirdyanov; Ulf Büntgen; Guobao Xu; Guobao Xu; Matthew W. Salzer; Étienne Boucher; Étienne Boucher; Philipp Hochreuther; Samuli Helama; Ernesto Tejedor; Frederick Reinig; Clive Oppenheimer; Clive Oppenheimer; Fabio Gennaretti; Achim Bräuning; A. Stine; Christophe Corona; Sebastian Guillet; Peter Huybers; Wolfgang Jens-Henrik Meier; A. M. Trevino; Paolo Cherubini; Björn E. Gunnarson; Malcolm K. Hughes; Dominique Arseneault; Kevin J. Anchukaitis; Joel Guiot; Kathy Allen; Kathy Allen; Olga V. Churakova (Sidorova); Jussi Grießinger; Scott St. George; Rob Wilson; Rob Wilson; Snigdhansu Chatterjee; Valerie Trouet;doi: 10.1038/s41467-021-23627-6 , 10.17863/cam.72964 , 10.17863/cam.73538 , 10.17863/cam.70956 , 10.13016/m2vnjq-1qm5
pmid: 34099683
pmc: PMC8184857
handle: 10023/23399 , 11343/304767
doi: 10.1038/s41467-021-23627-6 , 10.17863/cam.72964 , 10.17863/cam.73538 , 10.17863/cam.70956 , 10.13016/m2vnjq-1qm5
pmid: 34099683
pmc: PMC8184857
handle: 10023/23399 , 11343/304767
AbstractTree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794–2016 CE at 0.79 (p < 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean, variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the influence of subjectivity in the reconstruction process. We therefore recommend the routine use of ensemble reconstruction approaches to provide a more consensual picture of past climate variability.
Nature Communication... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/304767Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/23399Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03252710Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Univerzitní repozitář Masarykovy univerzityArticle . 2021Data sources: Univerzitní repozitář Masarykovy univerzityUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23627-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/304767Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/23399Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03252710Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Univerzitní repozitář Masarykovy univerzityArticle . 2021Data sources: Univerzitní repozitář Masarykovy univerzityUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23627-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Springer Science and Business Media LLC Authors: Alexander V. Kirdyanov; Anastasia A. Knorre; Eugene A. Vaganov;pmid: 16163553
To investigate the variability of primary production of boreal forest ecosystems under the current climatic changes, we compared the dynamics of annual increments and productivity of the main components of plant community (trees, shrubs, mosses) at three sites in the north of Siberia (Russia). Annual radial growth of trees and shrubs was mostly defined by summer temperature regime (positive correlation), but climatic response of woody plants was species specific and depends on local conditions. Dynamics of annual increments of mosses were opposite to tree growth. The difference in climatic response of the different vegetation components of the forest ecosystems indicates that these components seem to be adapted to use climatic conditions during the short and severe northern summer, and decreasing in annual production of one component is usually combined with the increase of other component productivity. Average productivity in the northern forest ecosystems varies from 0.05 to 0.14 t ha(-1) year(-1) for trees, from 0.05 to 0.18 t ha(-1) year(-1) for shrubs and from 0.54 to 0.66 t ha(-1) year(-1) for mosses. Higher values of tree productivity combined with lower annual moss productivity were found in sites in northern taiga in comparison with forest-tundra. Different tendencies in the productivity of the dominant species from each vegetation level (trees, shrubs, mosses) were indicated for the last 10 years studied (1990-1999): while productivity of mosses is increasing, productivity of trees is decreasing, but there is no obvious trend in the productivity of shrubs. Our results show that in the long term, the main contribution to changes in annual biomass productivity in forest-tundra and northern taiga ecosystems under the predicted climatic changes will be determined by living ground cover.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-005-0248-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-005-0248-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Germany, Russian Federation, Russian FederationPublisher:Springer Science and Business Media LLC Authors: Johann H. Jungclaus; Fredrik Charpentier Ljungqvist; Nicola Di Cosmo; Ulf Büntgen; +18 AuthorsJohann H. Jungclaus; Fredrik Charpentier Ljungqvist; Nicola Di Cosmo; Ulf Büntgen; Ulf Büntgen; Paul J. Krusic; Lukas Wacker; Frederick Reinig; Jan Esper; Vladimir S. Myglan; Jürg Luterbacher; Jed O. Kaplan; Olga Solomina; Michiel de Vaan; Michael McCormick; Willy Tegel; Michael Sigl; Kurt Nicolussi; Alexander V. Kirdyanov; Alexander V. Kirdyanov; Sebastian Wagner; Clive Oppenheimer;doi: 10.1038/ngeo2927
We discuss the combined efficacy of environmental, archaeological and historical indicators in establishing a prolonged period of cold summers across much of the Northern Hemisphere landmass between 536 and about 660 AD, which we term the Late Antique Little Ice Age (LALIA).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2927&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2927&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Italy, Slovenia, India, Slovenia, United Kingdom, France, Spain, Finland, France, Slovenia, Slovenia, Spain, Finland, France, Switzerland, IndiaPublisher:Springer Science and Business Media LLC Funded by:EC | ASFORCLIC, SNSF | INtra-seasonal Tree growt..., SNSF | Coupling stem water flow ... +1 projectsEC| ASFORCLIC ,SNSF| INtra-seasonal Tree growth along Elevational GRAdients in the European ALps (INTEGRAL) ,SNSF| Coupling stem water flow and structural carbon allocation in a warming climate: the Lötschental study case (LOTFOR) ,ANR| ARBREAuthors: Silvestro, Roberto; Mencuccini, Maurizio; García-Valdés, Raúl; Antonucci, Serena; +69 AuthorsSilvestro, Roberto; Mencuccini, Maurizio; García-Valdés, Raúl; Antonucci, Serena; Arzac, Alberto; Biondi, Franco; Buttò, Valentina; Camarero, J; Campelo, Filipe; Cochard, Hervé; Čufar, Katarina; Cuny, Henri; de Luis, Martin; Deslauriers, Annie; Drolet, Guillaume; Fonti, Marina; Fonti, Patrick; Giovannelli, Alessio; Gričar, Jožica; Gruber, Andreas; Gryc, Vladimír; Guerrieri, Rossella; Güney, Aylin; Guo, Xiali; Huang, Jian-Guo; Jyske, Tuula; Kašpar, Jakub; Kirdyanov, Alexander; Klein, Tamir; Lemay, Audrey; Li, Xiaoxia; Liang, Eryuan; Lintunen, Anna; Liu, Feng; Lombardi, Fabio; Ma, Qianqian; Mäkinen, Harri; Malik, Rayees; Martinez del Castillo, Edurne; Martinez-Vilalta, Jordi; Mayr, Stefan; Morin, Hubert; Nabais, Cristina; Nöjd, Pekka; Oberhuber, Walter; Olano, José; Ouimette, Andrew; Paljakka, Teemu; Peltoniemi, Mikko; Peters, Richard; Ren, Ping; Prislan, Peter; Rathgeber, Cyrille; Sala, Anna; Saracino, Antonio; Saulino, Luigi; Schiestl-Aalto, Piia; Shishov, Vladimir; Stokes, Alexia; Sukumar, Raman; Sylvain, Jean-Daniel; Tognetti, Roberto; Treml, Václav; Urban, Josef; Vavrčík, Hanuš; Vieira, Joana; von Arx, Georg; Wang, Yan; Yang, Bao; Zeng, Qiao; Zhang, Shaokang; Ziaco, Emanuele; Rossi, Sergio;pmid: 39103349
pmc: PMC11300610
AbstractAs major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues. We show temporally coupled seasonal peaks of carbon assimilation (GPP) and wood cell differentiation, while the two processes are substantially decoupled during off-peak periods. Peaks of cambial activity occur substantially earlier compared to GPP, suggesting the buffer role of non-structural carbohydrates between the processes of carbon assimilation and allocation to wood. Our findings suggest that high-resolution seasonal data of ecosystem carbon fluxes, wood formation and the associated physiological processes may reduce uncertainties in carbon source-sink relationships at different spatial scales, from stand to ecosystem levels.
IRIS Cnr arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2024 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/144595Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555127Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaDigital repository of Slovenian research organizationsArticle . 2024License: CC BYData sources: Digital repository of Slovenian research organizationsCIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAIndian Institute of Science, Bangalore: ePrints@IIscArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-49494-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 25 Powered bymore_vert IRIS Cnr arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2024 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/144595Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555127Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaDigital repository of Slovenian research organizationsArticle . 2024License: CC BYData sources: Digital repository of Slovenian research organizationsCIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAIndian Institute of Science, Bangalore: ePrints@IIscArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-49494-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Funded by:SNSF | Climate change and tree p..., SNSF | Katalog der datierten Han..., RSF | Extreme (catastrophic) dr... +1 projectsSNSF| Climate change and tree physiological response in Siberia and in the Alps during warm and cold periods of the last 1500 years ,SNSF| Katalog der datierten Handschriften in der Schweiz ,RSF| Extreme (catastrophic) droughts on the Siberian south over the past millennia ,SNSF| Evaluation de quelques objectifs d'une école expérimentaleAuthors: Olga V. Churakova-Sidorova; Vladimir S. Myglan; Marina V. Fonti; Oksana V. Naumova; +7 AuthorsOlga V. Churakova-Sidorova; Vladimir S. Myglan; Marina V. Fonti; Oksana V. Naumova; Alexander V. Kirdyanov; Ivan A. Kalugin; Valery V. Babich; Georgina M. Falster; Eugene A. Vaganov; Rolf T. W. Siegwolf; Matthias Saurer;AbstractTemperature and precipitation changes are crucial for larch trees growing at high-elevation sites covered by permafrost in the Altai-Sayan mountain range (ASMR). To contextualize the amplitude of recent climate fluctuations, we have to look into the past by analyzing millennial paleoclimatic archives recording both temperature and precipitation. We developed annually resolved 1500-year tree-ring cellulose chronologies (δ13Ccell, δ18Ocell), and used these new records to reconstruct the variability in local summer precipitation and air temperature. We combined our new local reconstructions with existing paleoclimatic archives available for the Altai. The data show a strong decreasing trend by ca. 49% in regional summer precipitation, along with a regional summer temperature increase towards the twenty-first century, relative to the preceding 1500 years. Modern dry conditions (1966–2016 CE) in the ASMR are the result of simultaneous summer warming and decreased precipitation. Our new reconstructions also demonstrate that climate change in the ASMR is much stronger compared to the global average.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-11299-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-11299-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Russian Federation, FinlandPublisher:Elsevier BV EsperJan; Krusic, Paul J.; Ljungqvist, Fredrik; Luterbacher, Jürg; Carrer, Marco; Cook, Ed; Davi, Nicole K.; Hartl-Meier, Claudia; Kirdyanov, A.; Konter, O.; Myglan, V.; Timonen, Mauri; Treydte, Kerstin; Trouet, Valerie; Villalba, Ricardo; Wilson, Rob S.; Yang, Bao; Büntgen, Ulf;Tree-ring chronologies are widely used to reconstruct high-to low-frequency variations in growing season temperatures over centuries to millennia. The relevance of these timeseries in large-scale climate reconstructions is often determined by the strength of their correlation against instrumental temperature data. However, this single criterion ignores several important quantitative and qualitative characteristics of tree-ring chronologies. Those characteristics are (i) data homogeneity, (ii) sample replication, (iii) growth coherence, (iv) chronology development, and (v) climate signal including the correlation with instrumental data. Based on these 5 characteristics, a reconstruction-scoring scheme is proposed and applied to 39 published, millennial-length temperature reconstructions from Asia, Europe, North America, and the Southern Hemisphere. Results reveal no reconstruction scores highest in every category and each has their own strengths and weaknesses. Reconstructions that perform better overall include N-Scan and Finland from Europe, E-Canada from North America, Yamal and Dzhelo from Asia. Reconstructions performing less well include W-Himalaya and Karakorum from Asia, Tatra and S-Finland from Europe, and Great Basin from North America. By providing a comprehensive set of criteria to evaluate tree-ring chronologies we hope to improve the development of large-scale temperature reconstructions spanning the past millennium. All reconstructions and their corresponding scores are provided at www.blogs.uni-mainz.de/fb09climatology.
Quaternary Science R... arrow_drop_down Quaternary Science ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSiberian Federal University: Archiv Elektronnych SFUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Quaternary Science R... arrow_drop_down Quaternary Science ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSiberian Federal University: Archiv Elektronnych SFUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Norway, Norway, Italy, FrancePublisher:Wiley Funded by:UKRI | SCORE: Supply Chain Optim..., CO | THE LINK BETWEEN PLANT FU...UKRI| SCORE: Supply Chain Optimisation for demand Response Efficiency ,CO| THE LINK BETWEEN PLANT FUNCTIONAL TRAITS AND SPECIES COEXISTENCE IN THE CHILEAN FORESTAuthors: Emilia Gutiérrez; J. Julio Camarero; Alexander V. Kirdyanov; Alexander V. Kirdyanov; +24 AuthorsEmilia Gutiérrez; J. Julio Camarero; Alexander V. Kirdyanov; Alexander V. Kirdyanov; Jeff Diez; Raúl Sánchez-Salguero; Raúl Sánchez-Salguero; Enric Batllori; Marco Carrer; Narayan Prasad Gaire; Narayan Prasad Gaire; Vincent Jomelli; Gabriel Sangüesa-Barreda; Ingrid Ertshus Mathisen; Johanna M. Toivonen; Alex Fajardo; Geneviève Dufour-Tremblay; Antonio Gazol; Martin Wilmking; Esther Lévesque; Eliot J. B. McIntire; Krishna B. Shrestha; Juan Carlos Linares; Olga Tutubalina; Annika Hofgaard; Pavel Moiseev; Eryuan Liang; Stéphane Boudreau;AbstractClimate warming is expected to positively alter upward and poleward treelines which are controlled by low temperature and a short growing season. Despite the importance of treelines as a bioassay of climate change, a global field assessment and posterior forecasting of tree growth at annual scales is lacking. Using annually resolved tree‐ring data located across Eurasia and the Americas, we quantified and modeled the relationship between temperature and radial growth at treeline during the 20th century. We then tested whether this temperature–growth association will remain stable during the 21st century using a forward model under two climate scenarios (RCP 4.5 and 8.5). During the 20th century, growth enhancements were common in most sites, and temperature and growth showed positive trends. Interestingly, the relationship between temperature and growth trends was contingent on tree age suggesting biogeographic patterns in treeline growth are contingent on local factors besides climate warming. Simulations forecast temperature–growth decoupling during the 21st century. The growing season at treeline is projected to lengthen and growth rates would increase and become less dependent on temperature rise. These forecasts illustrate how growth may decouple from climate warming in cold regions and near the margins of tree existence. Such projected temperature–growth decoupling could impact ecosystem processes in mountain and polar biomes, with feedbacks on climate warming.
Global Change Biolog... arrow_drop_down Bergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Bergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FinlandPublisher:Wiley Funded by:RSF | Adaptation of conifers in...RSF| Adaptation of conifers in Eurasia to changing environment: eco-physiological research of tree-ringsRinne, K. T.; Saurer, M.; Kirdyanov, A. V.; Bryukhanova, M. V.; Prokushkin, A. S.; Churakova (Sidorova), O. V.; Siegwolf; R. T. W.;pmid: 25916312
AbstractLittle is known about the dynamics of concentrations and carbon isotope ratios of individual carbohydrates in leaves in response to climatic and physiological factors. Improved knowledge of the isotopic ratio in sugars will enhance our understanding of the tree ring isotope ratio and will help to decipher environmental conditions in retrospect more reliably. Carbohydrate samples from larch (Larix gmelinii) needles of two sites in the continuous permafrost zone of Siberia with differing growth conditions were analysed with the Compound‐Specific Isotope Analysis (CSIA). We compared concentrations and carbon isotope values (δ13C) of sucrose, fructose, glucose and pinitol combined with phenological data. The results for the variability of the needle carbohydrates show high dynamics with distinct seasonal characteristics between and within the studied years with a clear link to the climatic conditions, particularly vapour pressure deficit. Compound‐specific differences in δ13C values as a response to climate were detected. The δ13C of pinitol, which contributes up to 50% of total soluble carbohydrates, was almost invariant during the whole growing season. Our study provides the first in‐depth characterization of compound‐specific needle carbohydrate isotope variability, identifies involved mechanisms and shows the potential of such results for linking tree physiological responses to different climatic conditions.
Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 Argentina, Russian Federation, Russian Federation, Germany, Argentina, Belgium, ItalyPublisher:Elsevier BV Funded by:DFG, UKRI | An integrated data-model ...DFG ,UKRI| An integrated data-model study of interactions between tropical monsoons and extra-tropical climate variability and extremes (INTEGRATE)Minhui He; Kristina Seftigen; Kristina Seftigen; Bao Yang; Ulf Büntgen; Fredrik Charpentier Ljungqvist; Paul J. Krusic; Paul J. Krusic; Ricardo Villalba; David W. Stahle; Lea Schneider; Jan Esper; Alma Piermattei; Alexander V. Kirdyanov; Alexander V. Kirdyanov; Alexander V. Kirdyanov; Andrea Seim; Juerg Luterbacher;handle: 2078.1/251597 , 11336/141433 , 2318/1931178
To place recent hydroclimate changes, including drought occurrences, in a long-term historical context, tree-ring records serve as an important natural archive. Here, we evaluate 46 millennium-long ...
Archivio Istituziona... arrow_drop_down University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/171716Data sources: Bielefeld Academic Search Engine (BASE)Siberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2019.106074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/171716Data sources: Bielefeld Academic Search Engine (BASE)Siberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2019.106074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Funded by:SNSF | Identifying seasonal clim...SNSF| Identifying seasonal climatic signals from water conducting cells in tree ringsPatrick Fonti; Oksana V. Naumova; Vladimir S. Myglan; Eugene A. Vaganov; Marina V. Bryukhanova; Alexander V. Kirdyanov;doi: 10.3732/ajb.1200484
pmid: 23660567
• Premise of the study: Xylem structure determines the hydraulic and mechanical properties of a stem, and its plasticity is fundamental for maintaining tree performance under changing conditions. Unveiling the mechanism and the range of xylem adjustment is thus necessary to anticipate climate change impacts on vegetation.• Methods: To understand the mechanistic process and the functional impact of xylem responses to warming in a cold‐limited environment, we investigated the relationship between temperature and tracheid anatomy along a 312‐yr tree‐ring chronology of Larix sibirica trees from the Altay Mountains in Russia.• Key results: Climate‐growth analyses indicated that warming favors wider earlywood cell lumen, thicker latewood walls, denser maximum latewood, and wider rings. The temperature signal of the latewood was stronger (r > 0.7) and covered a longer and more stable period (from June to August) than that of earlywood and tree‐ring width. Long‐term analyses indicated a diverging trend between lumen and cell wall of early‐ and latewood.• Conclusions: Xylem anatomy appears to respond to warming temperatures. A warmer early‐growing season raises water conduction capacity by increasing the number and size of earlywood tracheids. The higher‐performing earlywood tracheids promote more carbon fixation of the latewood cells by incrementing the rate of assimilation when summer conditions are favorable for growth. The diverging long‐term variation of lumen and cell wall in earlywood vs. latewood suggests that xylem adjustments in latewood increase mechanical integrity and support increasing tree size under the ameliorated growing conditions.
American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1200484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 80 citations 80 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1200484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 28 Jul 2021 Australia, Australia, Germany, Switzerland, Finland, France, United Kingdom, France, United Kingdom, France, United Kingdom, Czech Republic, France, AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | MONOSTAREC| MONOSTARKurt Nicolussi; Vladimir S. Myglan; Markus Stoffel; Bao Yang; Bao Yang; Kristina Seftigen; Kristina Seftigen; Paul J. Krusic; Paul J. Krusic; Josef Ludescher; Jan Esper; Jianglin Wang; Jianglin Wang; Alexander V. Kirdyanov; Alexander V. Kirdyanov; Ulf Büntgen; Guobao Xu; Guobao Xu; Matthew W. Salzer; Étienne Boucher; Étienne Boucher; Philipp Hochreuther; Samuli Helama; Ernesto Tejedor; Frederick Reinig; Clive Oppenheimer; Clive Oppenheimer; Fabio Gennaretti; Achim Bräuning; A. Stine; Christophe Corona; Sebastian Guillet; Peter Huybers; Wolfgang Jens-Henrik Meier; A. M. Trevino; Paolo Cherubini; Björn E. Gunnarson; Malcolm K. Hughes; Dominique Arseneault; Kevin J. Anchukaitis; Joel Guiot; Kathy Allen; Kathy Allen; Olga V. Churakova (Sidorova); Jussi Grießinger; Scott St. George; Rob Wilson; Rob Wilson; Snigdhansu Chatterjee; Valerie Trouet;doi: 10.1038/s41467-021-23627-6 , 10.17863/cam.72964 , 10.17863/cam.73538 , 10.17863/cam.70956 , 10.13016/m2vnjq-1qm5
pmid: 34099683
pmc: PMC8184857
handle: 10023/23399 , 11343/304767
doi: 10.1038/s41467-021-23627-6 , 10.17863/cam.72964 , 10.17863/cam.73538 , 10.17863/cam.70956 , 10.13016/m2vnjq-1qm5
pmid: 34099683
pmc: PMC8184857
handle: 10023/23399 , 11343/304767
AbstractTree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794–2016 CE at 0.79 (p < 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean, variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the influence of subjectivity in the reconstruction process. We therefore recommend the routine use of ensemble reconstruction approaches to provide a more consensual picture of past climate variability.
Nature Communication... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/304767Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/23399Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03252710Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Univerzitní repozitář Masarykovy univerzityArticle . 2021Data sources: Univerzitní repozitář Masarykovy univerzityUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23627-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/304767Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/23399Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03252710Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Univerzitní repozitář Masarykovy univerzityArticle . 2021Data sources: Univerzitní repozitář Masarykovy univerzityUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23627-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Springer Science and Business Media LLC Authors: Alexander V. Kirdyanov; Anastasia A. Knorre; Eugene A. Vaganov;pmid: 16163553
To investigate the variability of primary production of boreal forest ecosystems under the current climatic changes, we compared the dynamics of annual increments and productivity of the main components of plant community (trees, shrubs, mosses) at three sites in the north of Siberia (Russia). Annual radial growth of trees and shrubs was mostly defined by summer temperature regime (positive correlation), but climatic response of woody plants was species specific and depends on local conditions. Dynamics of annual increments of mosses were opposite to tree growth. The difference in climatic response of the different vegetation components of the forest ecosystems indicates that these components seem to be adapted to use climatic conditions during the short and severe northern summer, and decreasing in annual production of one component is usually combined with the increase of other component productivity. Average productivity in the northern forest ecosystems varies from 0.05 to 0.14 t ha(-1) year(-1) for trees, from 0.05 to 0.18 t ha(-1) year(-1) for shrubs and from 0.54 to 0.66 t ha(-1) year(-1) for mosses. Higher values of tree productivity combined with lower annual moss productivity were found in sites in northern taiga in comparison with forest-tundra. Different tendencies in the productivity of the dominant species from each vegetation level (trees, shrubs, mosses) were indicated for the last 10 years studied (1990-1999): while productivity of mosses is increasing, productivity of trees is decreasing, but there is no obvious trend in the productivity of shrubs. Our results show that in the long term, the main contribution to changes in annual biomass productivity in forest-tundra and northern taiga ecosystems under the predicted climatic changes will be determined by living ground cover.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-005-0248-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-005-0248-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Germany, Russian Federation, Russian FederationPublisher:Springer Science and Business Media LLC Authors: Johann H. Jungclaus; Fredrik Charpentier Ljungqvist; Nicola Di Cosmo; Ulf Büntgen; +18 AuthorsJohann H. Jungclaus; Fredrik Charpentier Ljungqvist; Nicola Di Cosmo; Ulf Büntgen; Ulf Büntgen; Paul J. Krusic; Lukas Wacker; Frederick Reinig; Jan Esper; Vladimir S. Myglan; Jürg Luterbacher; Jed O. Kaplan; Olga Solomina; Michiel de Vaan; Michael McCormick; Willy Tegel; Michael Sigl; Kurt Nicolussi; Alexander V. Kirdyanov; Alexander V. Kirdyanov; Sebastian Wagner; Clive Oppenheimer;doi: 10.1038/ngeo2927
We discuss the combined efficacy of environmental, archaeological and historical indicators in establishing a prolonged period of cold summers across much of the Northern Hemisphere landmass between 536 and about 660 AD, which we term the Late Antique Little Ice Age (LALIA).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2927&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2927&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Italy, Slovenia, India, Slovenia, United Kingdom, France, Spain, Finland, France, Slovenia, Slovenia, Spain, Finland, France, Switzerland, IndiaPublisher:Springer Science and Business Media LLC Funded by:EC | ASFORCLIC, SNSF | INtra-seasonal Tree growt..., SNSF | Coupling stem water flow ... +1 projectsEC| ASFORCLIC ,SNSF| INtra-seasonal Tree growth along Elevational GRAdients in the European ALps (INTEGRAL) ,SNSF| Coupling stem water flow and structural carbon allocation in a warming climate: the Lötschental study case (LOTFOR) ,ANR| ARBREAuthors: Silvestro, Roberto; Mencuccini, Maurizio; García-Valdés, Raúl; Antonucci, Serena; +69 AuthorsSilvestro, Roberto; Mencuccini, Maurizio; García-Valdés, Raúl; Antonucci, Serena; Arzac, Alberto; Biondi, Franco; Buttò, Valentina; Camarero, J; Campelo, Filipe; Cochard, Hervé; Čufar, Katarina; Cuny, Henri; de Luis, Martin; Deslauriers, Annie; Drolet, Guillaume; Fonti, Marina; Fonti, Patrick; Giovannelli, Alessio; Gričar, Jožica; Gruber, Andreas; Gryc, Vladimír; Guerrieri, Rossella; Güney, Aylin; Guo, Xiali; Huang, Jian-Guo; Jyske, Tuula; Kašpar, Jakub; Kirdyanov, Alexander; Klein, Tamir; Lemay, Audrey; Li, Xiaoxia; Liang, Eryuan; Lintunen, Anna; Liu, Feng; Lombardi, Fabio; Ma, Qianqian; Mäkinen, Harri; Malik, Rayees; Martinez del Castillo, Edurne; Martinez-Vilalta, Jordi; Mayr, Stefan; Morin, Hubert; Nabais, Cristina; Nöjd, Pekka; Oberhuber, Walter; Olano, José; Ouimette, Andrew; Paljakka, Teemu; Peltoniemi, Mikko; Peters, Richard; Ren, Ping; Prislan, Peter; Rathgeber, Cyrille; Sala, Anna; Saracino, Antonio; Saulino, Luigi; Schiestl-Aalto, Piia; Shishov, Vladimir; Stokes, Alexia; Sukumar, Raman; Sylvain, Jean-Daniel; Tognetti, Roberto; Treml, Václav; Urban, Josef; Vavrčík, Hanuš; Vieira, Joana; von Arx, Georg; Wang, Yan; Yang, Bao; Zeng, Qiao; Zhang, Shaokang; Ziaco, Emanuele; Rossi, Sergio;pmid: 39103349
pmc: PMC11300610
AbstractAs major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues. We show temporally coupled seasonal peaks of carbon assimilation (GPP) and wood cell differentiation, while the two processes are substantially decoupled during off-peak periods. Peaks of cambial activity occur substantially earlier compared to GPP, suggesting the buffer role of non-structural carbohydrates between the processes of carbon assimilation and allocation to wood. Our findings suggest that high-resolution seasonal data of ecosystem carbon fluxes, wood formation and the associated physiological processes may reduce uncertainties in carbon source-sink relationships at different spatial scales, from stand to ecosystem levels.
IRIS Cnr arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2024 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/144595Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555127Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaDigital repository of Slovenian research organizationsArticle . 2024License: CC BYData sources: Digital repository of Slovenian research organizationsCIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAIndian Institute of Science, Bangalore: ePrints@IIscArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-49494-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 25 Powered bymore_vert IRIS Cnr arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2024 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/144595Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555127Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaDigital repository of Slovenian research organizationsArticle . 2024License: CC BYData sources: Digital repository of Slovenian research organizationsCIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAIndian Institute of Science, Bangalore: ePrints@IIscArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-49494-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Funded by:SNSF | Climate change and tree p..., SNSF | Katalog der datierten Han..., RSF | Extreme (catastrophic) dr... +1 projectsSNSF| Climate change and tree physiological response in Siberia and in the Alps during warm and cold periods of the last 1500 years ,SNSF| Katalog der datierten Handschriften in der Schweiz ,RSF| Extreme (catastrophic) droughts on the Siberian south over the past millennia ,SNSF| Evaluation de quelques objectifs d'une école expérimentaleAuthors: Olga V. Churakova-Sidorova; Vladimir S. Myglan; Marina V. Fonti; Oksana V. Naumova; +7 AuthorsOlga V. Churakova-Sidorova; Vladimir S. Myglan; Marina V. Fonti; Oksana V. Naumova; Alexander V. Kirdyanov; Ivan A. Kalugin; Valery V. Babich; Georgina M. Falster; Eugene A. Vaganov; Rolf T. W. Siegwolf; Matthias Saurer;AbstractTemperature and precipitation changes are crucial for larch trees growing at high-elevation sites covered by permafrost in the Altai-Sayan mountain range (ASMR). To contextualize the amplitude of recent climate fluctuations, we have to look into the past by analyzing millennial paleoclimatic archives recording both temperature and precipitation. We developed annually resolved 1500-year tree-ring cellulose chronologies (δ13Ccell, δ18Ocell), and used these new records to reconstruct the variability in local summer precipitation and air temperature. We combined our new local reconstructions with existing paleoclimatic archives available for the Altai. The data show a strong decreasing trend by ca. 49% in regional summer precipitation, along with a regional summer temperature increase towards the twenty-first century, relative to the preceding 1500 years. Modern dry conditions (1966–2016 CE) in the ASMR are the result of simultaneous summer warming and decreased precipitation. Our new reconstructions also demonstrate that climate change in the ASMR is much stronger compared to the global average.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-11299-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-11299-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Russian Federation, FinlandPublisher:Elsevier BV EsperJan; Krusic, Paul J.; Ljungqvist, Fredrik; Luterbacher, Jürg; Carrer, Marco; Cook, Ed; Davi, Nicole K.; Hartl-Meier, Claudia; Kirdyanov, A.; Konter, O.; Myglan, V.; Timonen, Mauri; Treydte, Kerstin; Trouet, Valerie; Villalba, Ricardo; Wilson, Rob S.; Yang, Bao; Büntgen, Ulf;Tree-ring chronologies are widely used to reconstruct high-to low-frequency variations in growing season temperatures over centuries to millennia. The relevance of these timeseries in large-scale climate reconstructions is often determined by the strength of their correlation against instrumental temperature data. However, this single criterion ignores several important quantitative and qualitative characteristics of tree-ring chronologies. Those characteristics are (i) data homogeneity, (ii) sample replication, (iii) growth coherence, (iv) chronology development, and (v) climate signal including the correlation with instrumental data. Based on these 5 characteristics, a reconstruction-scoring scheme is proposed and applied to 39 published, millennial-length temperature reconstructions from Asia, Europe, North America, and the Southern Hemisphere. Results reveal no reconstruction scores highest in every category and each has their own strengths and weaknesses. Reconstructions that perform better overall include N-Scan and Finland from Europe, E-Canada from North America, Yamal and Dzhelo from Asia. Reconstructions performing less well include W-Himalaya and Karakorum from Asia, Tatra and S-Finland from Europe, and Great Basin from North America. By providing a comprehensive set of criteria to evaluate tree-ring chronologies we hope to improve the development of large-scale temperature reconstructions spanning the past millennium. All reconstructions and their corresponding scores are provided at www.blogs.uni-mainz.de/fb09climatology.
Quaternary Science R... arrow_drop_down Quaternary Science ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSiberian Federal University: Archiv Elektronnych SFUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Quaternary Science R... arrow_drop_down Quaternary Science ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSiberian Federal University: Archiv Elektronnych SFUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Norway, Norway, Italy, FrancePublisher:Wiley Funded by:UKRI | SCORE: Supply Chain Optim..., CO | THE LINK BETWEEN PLANT FU...UKRI| SCORE: Supply Chain Optimisation for demand Response Efficiency ,CO| THE LINK BETWEEN PLANT FUNCTIONAL TRAITS AND SPECIES COEXISTENCE IN THE CHILEAN FORESTAuthors: Emilia Gutiérrez; J. Julio Camarero; Alexander V. Kirdyanov; Alexander V. Kirdyanov; +24 AuthorsEmilia Gutiérrez; J. Julio Camarero; Alexander V. Kirdyanov; Alexander V. Kirdyanov; Jeff Diez; Raúl Sánchez-Salguero; Raúl Sánchez-Salguero; Enric Batllori; Marco Carrer; Narayan Prasad Gaire; Narayan Prasad Gaire; Vincent Jomelli; Gabriel Sangüesa-Barreda; Ingrid Ertshus Mathisen; Johanna M. Toivonen; Alex Fajardo; Geneviève Dufour-Tremblay; Antonio Gazol; Martin Wilmking; Esther Lévesque; Eliot J. B. McIntire; Krishna B. Shrestha; Juan Carlos Linares; Olga Tutubalina; Annika Hofgaard; Pavel Moiseev; Eryuan Liang; Stéphane Boudreau;AbstractClimate warming is expected to positively alter upward and poleward treelines which are controlled by low temperature and a short growing season. Despite the importance of treelines as a bioassay of climate change, a global field assessment and posterior forecasting of tree growth at annual scales is lacking. Using annually resolved tree‐ring data located across Eurasia and the Americas, we quantified and modeled the relationship between temperature and radial growth at treeline during the 20th century. We then tested whether this temperature–growth association will remain stable during the 21st century using a forward model under two climate scenarios (RCP 4.5 and 8.5). During the 20th century, growth enhancements were common in most sites, and temperature and growth showed positive trends. Interestingly, the relationship between temperature and growth trends was contingent on tree age suggesting biogeographic patterns in treeline growth are contingent on local factors besides climate warming. Simulations forecast temperature–growth decoupling during the 21st century. The growing season at treeline is projected to lengthen and growth rates would increase and become less dependent on temperature rise. These forecasts illustrate how growth may decouple from climate warming in cold regions and near the margins of tree existence. Such projected temperature–growth decoupling could impact ecosystem processes in mountain and polar biomes, with feedbacks on climate warming.
Global Change Biolog... arrow_drop_down Bergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Bergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FinlandPublisher:Wiley Funded by:RSF | Adaptation of conifers in...RSF| Adaptation of conifers in Eurasia to changing environment: eco-physiological research of tree-ringsRinne, K. T.; Saurer, M.; Kirdyanov, A. V.; Bryukhanova, M. V.; Prokushkin, A. S.; Churakova (Sidorova), O. V.; Siegwolf; R. T. W.;pmid: 25916312
AbstractLittle is known about the dynamics of concentrations and carbon isotope ratios of individual carbohydrates in leaves in response to climatic and physiological factors. Improved knowledge of the isotopic ratio in sugars will enhance our understanding of the tree ring isotope ratio and will help to decipher environmental conditions in retrospect more reliably. Carbohydrate samples from larch (Larix gmelinii) needles of two sites in the continuous permafrost zone of Siberia with differing growth conditions were analysed with the Compound‐Specific Isotope Analysis (CSIA). We compared concentrations and carbon isotope values (δ13C) of sucrose, fructose, glucose and pinitol combined with phenological data. The results for the variability of the needle carbohydrates show high dynamics with distinct seasonal characteristics between and within the studied years with a clear link to the climatic conditions, particularly vapour pressure deficit. Compound‐specific differences in δ13C values as a response to climate were detected. The δ13C of pinitol, which contributes up to 50% of total soluble carbohydrates, was almost invariant during the whole growing season. Our study provides the first in‐depth characterization of compound‐specific needle carbohydrate isotope variability, identifies involved mechanisms and shows the potential of such results for linking tree physiological responses to different climatic conditions.
Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 Argentina, Russian Federation, Russian Federation, Germany, Argentina, Belgium, ItalyPublisher:Elsevier BV Funded by:DFG, UKRI | An integrated data-model ...DFG ,UKRI| An integrated data-model study of interactions between tropical monsoons and extra-tropical climate variability and extremes (INTEGRATE)Minhui He; Kristina Seftigen; Kristina Seftigen; Bao Yang; Ulf Büntgen; Fredrik Charpentier Ljungqvist; Paul J. Krusic; Paul J. Krusic; Ricardo Villalba; David W. Stahle; Lea Schneider; Jan Esper; Alma Piermattei; Alexander V. Kirdyanov; Alexander V. Kirdyanov; Alexander V. Kirdyanov; Andrea Seim; Juerg Luterbacher;handle: 2078.1/251597 , 11336/141433 , 2318/1931178
To place recent hydroclimate changes, including drought occurrences, in a long-term historical context, tree-ring records serve as an important natural archive. Here, we evaluate 46 millennium-long ...
Archivio Istituziona... arrow_drop_down University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/171716Data sources: Bielefeld Academic Search Engine (BASE)Siberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2019.106074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/171716Data sources: Bielefeld Academic Search Engine (BASE)Siberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2019.106074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Funded by:SNSF | Identifying seasonal clim...SNSF| Identifying seasonal climatic signals from water conducting cells in tree ringsPatrick Fonti; Oksana V. Naumova; Vladimir S. Myglan; Eugene A. Vaganov; Marina V. Bryukhanova; Alexander V. Kirdyanov;doi: 10.3732/ajb.1200484
pmid: 23660567
• Premise of the study: Xylem structure determines the hydraulic and mechanical properties of a stem, and its plasticity is fundamental for maintaining tree performance under changing conditions. Unveiling the mechanism and the range of xylem adjustment is thus necessary to anticipate climate change impacts on vegetation.• Methods: To understand the mechanistic process and the functional impact of xylem responses to warming in a cold‐limited environment, we investigated the relationship between temperature and tracheid anatomy along a 312‐yr tree‐ring chronology of Larix sibirica trees from the Altay Mountains in Russia.• Key results: Climate‐growth analyses indicated that warming favors wider earlywood cell lumen, thicker latewood walls, denser maximum latewood, and wider rings. The temperature signal of the latewood was stronger (r > 0.7) and covered a longer and more stable period (from June to August) than that of earlywood and tree‐ring width. Long‐term analyses indicated a diverging trend between lumen and cell wall of early‐ and latewood.• Conclusions: Xylem anatomy appears to respond to warming temperatures. A warmer early‐growing season raises water conduction capacity by increasing the number and size of earlywood tracheids. The higher‐performing earlywood tracheids promote more carbon fixation of the latewood cells by incrementing the rate of assimilation when summer conditions are favorable for growth. The diverging long‐term variation of lumen and cell wall in earlywood vs. latewood suggests that xylem adjustments in latewood increase mechanical integrity and support increasing tree size under the ameliorated growing conditions.
American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1200484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 80 citations 80 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1200484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu