- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object 2014 ItalyPublisher:Elsevier BV Authors: DE BELLIS, VINCENZO; Severi E.; Fontanesi S.; BOZZA, FABIO;handle: 11588/877402 , 11588/571859 , 11380/1019517
AbstractAs discussed in the part I of this paper, 3D models represent a useful tool for a detailed description of the mean and turbulent flow fields inside the engine cylinder. 3D results are utilized to develop and validate a 0D phenomenological turbulence model, sensitive to the variation of operative parameters such as valve phasing, valve lift, engine speed, etc.In part II of this paper, a 0D phenomenological combustion model is presented, as well. It is based on a fractal description of the flame front and is able to sense each of the fuel properties, the operating conditions (air-to-fuel ratio, spark advance, boost level) and the combustion chamber geometry. In addition, it is capable to properly handle different turbulence levels predicted by means of the turbulence model presented in the part I.The turbulence and combustion models are included, through user routines, in the commercial software GT-Power™. With reference to a small twin-cylinder VVA turbocharged engine, the turbulence/combustion model, once properly tuned, is finally used to calculate in-cylinder pressure traces, rate of heat release and overall engine performance at full load operations and brake specific fuel consumption at part load, as well. An excellent agreement between numerical forecasts and experimental evidence is obtained.
IRIS UNIMORE - Archi... arrow_drop_down IRIS UNIMORE - Archivio istituzionale della ricerca - Università di Modena e Reggio EmiliaConference object . 2014License: CC BY NC NDArchivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014License: CC 0Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 120visibility views 120 download downloads 96 Powered bymore_vert IRIS UNIMORE - Archi... arrow_drop_down IRIS UNIMORE - Archivio istituzionale della ricerca - Università di Modena e Reggio EmiliaConference object . 2014License: CC BY NC NDArchivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014License: CC 0Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 ItalyPublisher:Elsevier BV Authors: BOZZA, FABIO; DE BELLIS, VINCENZO; TEODOSIO, LUIGI;handle: 11588/602236
AbstractIn this work, a promising technique, consisting in an introduction of the external low pressure cooled EGR system, is analyzed by means of a 1D numerical approach with reference to a downsized spark-ignition turbocharged engine. The effects of various EGR amounts are investigated in terms of fuel consumption at full load operations. The proposed results highlight that EGR allows for increasing the knock safety margin. Fuel economy improvements however depend on the overall engine recalibration, consisting in proper settings of the A/F ratio and spark advance, compatible with knock occurrence. The numerical recalibration also accounts for additional limitations on the turbocharger speed, boost level, and turbine inlet temperature. The maximum BSFC improvement by the proposed solution is 5.9%.
Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Italy, GermanyPublisher:SAGE Publications Funded by:DFGDFGMalfi, Enrica; Esposito, Stefania; De Felice, Massimiliano; Pitsch, Heinz; Pischinger, Stefan; De Bellis, Vincenzo;handle: 11588/995716
Considering the strict regulations on the transport sector emissions, predictive models for engine emissions are essential tools to optimize high-efficient low-emission internal combustion engines (ICE) for vehicles. This aspect is of major importance, especially for developing new combustion concepts (e.g. lean, pre-chamber) or using alternative fuels. Among the gaseous emissions from spark-ignition (SI) engines, unburned hydrocarbons (uHC) are the most challenging species to model due to the complexity of the formation mechanisms. Phenomenological models are successfully used in these cases to predict emissions with a reduced computational effort. In this work, uHC phenomenological model approaches by the authors are further developed to improve the model predictivity for multiple variations including engine design, engine operating parameters, as well as different fuels and ignition methods. The model accounts for uHC contributions from piston top-land crevice, wall flame quenching, oil film fuel adsorption/desorption and features a tabulated-chemistry approach to describe uHC post-oxidation. With the support of 3D-CFD simulations, multiple novel modelling assumptions are developed and verified. The model is validated against an extensive measurement database obtained with two small-bore single-cylinder engines (SCE) fuelled with gasoline-like fuel, one with SI and one with pre-chamber, as well as against data from two different ultra-lean large-bore engines fuelled with natural gas (one equipped with a pre-chamber and one dual-fuel with a diesel pilot). The model correctly predicts the trends and absolute values of uHC emissions for all the operating conditions and the engines with an accuracy on average of 11.4%. The results demonstrate the general applicability of the model to different engine designs, the correct description of the main mechanisms contributing to fuel partial oxidation, and the potential to be extended to predict unburned fuel emissions with other fuels.
International Journa... arrow_drop_down International Journal of Engine ResearchArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/14680874241255157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Engine ResearchArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/14680874241255157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014 ItalyPublisher:Elsevier BV BOZZA, FABIO; DE BELLIS, VINCENZO; De Masi V.; GIMELLI, ALFREDO; MUCCILLO, MASSIMILIANO;handle: 11588/571860
AbstractModern internal combustion engines (ICEs) are becoming more and more complex in order to achieve not only better power and torque performance, but also to respect the pollutant emissions and the fuel consumption (CO2) limits.The turbocharger, advanced valve actuation systems (VVA) and the EGR circuit allow the ICE's load control together with the traditional throttle valve and spark advance. Thus, an higher number of operating parameters are available for the calibration engineer to achieve the required performance target (minimum fuel consumption at part load, maximum power and torque at full load, etc.). On the other hand, the increased degrees of freedom may frustrate the potentialities of so complex systems because of the effort needed to identify the optimal engine control strategies. The development of proper numerical models may assist and direct the experimental activity in order to reduce the related times and costs.Although VVA solutions could bring a reduction in the specific fuel consumption thanks to an important de-throttling of the intake system, unfortunately they can simultaneously lead to higher noise levels radiated by the intake mouth. In fact, in this case, the pressure waves travelling through the intake ducts are not properly damped by the throttle valve.In this paper a numerical methodology is developed to define the engine calibration and the intake valve lift profile that simultaneously minimize the BSFC and the noise at part load. The engine object of the study is a turbocharged Spark-Ignition Direct Injection (SIDI) ICE equipped by a lost motion valve actuation system for the intake valves. In this study, the commercial 1D thermo fluid-dynamic code GT-PowerTM is provided with user routines for the description of the combustion process and the handing of variable valve lift profiles. The engine model is thus integrated with a commercial optimization code (modeFRONTIERTM) to identify the optimized load control strategies to achieve the set objectives. The proposed methodology is also used for the definition of unconventional valve lift profiles. Particularly, the advantages related to the use of a small pre-lift before the main valve lift profile are estimated compared to a conventional EIVC strategy.
Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 ItalyPublisher:Elsevier BV Authors: DE BELLIS, VINCENZO; GIMELLI, ALFREDO; MUCCILLO, MASSIMILIANO;handle: 11588/649203
AbstractIn the paper, the potentialities offered by an advanced valve lift design are numerically analyzed. In particular, the study is carried out by a 1D approach and regards the characterization of a VVA strategy named “pre-lift” applied to a downsized turbocharged four-cylinder engine. The pre-lift consists of a small, almost constant lift of the intake valve during the exhaust stroke, so to increase the valves overlapping. The results show a benefit on the fuel economy and on the gas-dynamic noise at part load and a substantial increase in the delivered torque at full load, while preserving the fuel consumption.
Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 8 Powered bymore_vert Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018 ItalyPublisher:SAE International Bozza, Fabio; De Bellis, Vincenzo; Teodosio, Luigi; Tufano, Daniela; Malfi, Enrica;doi: 10.4271/2018-37-0008
handle: 11588/727932
In this work, various techniques are numerically applied to a base engine - vehicle system to estimate their potential CO2 emission reduction. The reference thermal unit is a downsized turbocharged spark-ignition Variable Valve Actuation (VVA) engine, with a Compression Ratio (CR) of 10. In order to improve its fuel consumption, preserving the original full-load torque, various technologies are considered, including an increased CR, an external low-pressure cooled EGR, and a ported Water Injection (WI). The analyses are carried out by a 1D commercial software (GT-PowerTM), enhanced by refined user-models for the description of in-cylinder processes, namely turbulence, combustion, heat transfer and knock. The latter were validated with reference to the base engine architecture in previous activities. To minimize the Brake Specific Fuel Consumption (BSFC) all over the engine operating plane, the control parameters of the base and modified engines are calibrated based on PID controllers. The calibration procedure is also verified with a direct fuel consumption minimization carried out by an external optimizer. The calibration provides the optimal Spark Advance (SA), Air-to-Fuel (A/F) ratio, Waste-Gate (WG) opening, and VVA setting, complying with limitations on knock intensity, turbine inlet temperature, boost level, turbocharger speed and in-cylinder pressure peak. The performance and calibration maps are computed for various combinations of the above technologies, including a two-stage CR system, and are compared to the ones related to the base architecture. The results show that EGR offers some BSFC benefits at low load, mainly thanks to the pumping work reduction, while it is practically ineffective for knock mitigation at high load. On the contrary, WI has the potential to substantially increase the knock resistance, improving the fuel consumption at high load. No substantial advantages are, indeed, detected with WI under knock-free operation. Computed BSFC maps are then embedded in a vehicle model with the aim of estimating the CO2 emission of a segment A vehicle over a WLTC. The proposed results give a clear outlook of the above technique potentials and offer a guideline to assess the trade-off between engine complexity and improved CO2 emission.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2018-37-0008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2018-37-0008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Italy, FrancePublisher:MDPI AG Funded by:EC | EAGLEEC| EAGLEAuthors: Vincenzo De Bellis; Enrica Malfi; Jean-Marc Zaccardi;doi: 10.3390/en14040889
handle: 11588/875616
In recent years, the development of hybrid powertrain allowed to substantially reduce the CO2 and pollutant emissions of vehicles. The optimal management of such power units represents a challenging task since more degrees of freedom are available compared to a conventional pure-thermal engine powertrain. The a priori knowledge of the driving mission allows identifying the actual optimal control strategy at the expense of a quite relevant computational effort. This is realized by the off-line optimization strategies, such as Pontryagin minimum principle—PMP—or dynamic programming. On the other hand, for an on-vehicle application, the driving mission is unknown, and a certain performance degradation must be expected, depending on the degree of simplification and the computational burden of the adopted control strategy. This work is focused on the development of a simplified control strategy, labeled as efficient thermal electric skipping strategy—ETESS, which presents performance similar to off-line strategies, but with a much-reduced computational effort. This is based on the alternative vehicle driving by either thermal engine or electric unit (no power-split between the power units). The ETESS is tested in a “backward-facing” vehicle simulator referring to a segment C car, fitted with a hybrid series-parallel powertrain. The reliability of the method is verified along different driving cycles, sizing, and efficiency of the power unit components and assessed with conventional control strategies. The outcomes put into evidence that ETESS gives fuel consumption close to PMP strategy, with the advantage of a drastically reduced computational time. The ETESS is extended to an online implementation by introducing an adaptative factor, resulting in performance similar to the well-assessed equivalent consumption minimization strategy, preserving the computational effort.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/889/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/889/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:SAE International DE BELLIS, VINCENZO; BOZZA, FABIO; Fontanesi, Stefano; Severi, Elena; Berni, Fabio;doi: 10.4271/2016-01-0545
handle: 11588/633833 , 11380/1107280
It is widely recognized that spatial and temporal evolution of both macro-and micro-turbulent scales inside internal combustion engines affect air-fuel mixing, combustion and pollutants formation. Particularly, in spark ignition engines, tumbling macro-structure induces the generation of a proper turbulence level to sustain the development and propagation of the flame front. As known, 3D-CFD codes are able to describe the evolution of the in-cylinder flow and turbulence fields with good accuracy, although a high computational effort is required. For this reason, only a limited set of operating conditions is usually investigated. On the other hand, thanks to a lower computational burden, 1D codes can be employed to study engine performance in the whole operating domain, despite of a less detailed description of in-cylinder processes. The integration of 1D and 3D approaches appears hence a promising path to combine the advantages of both. In the present paper, a 0D phenomenological mean flow and turbulence model belonging to the K-k model family is presented in detail. The latter is implemented in the GT-PowerTM software under the form of “user routine”. The model is tuned against in-cylinder results provided by 3D-CFD analyses carried out by the Star-CDTM code at two engine speeds under motored operation. In particular, a currently produced twin-cylinder turbocharged VVA engine is analyzed. The 0D model is then validated against further 3D results at various engine speeds and intake valve lifts, including early closure strategies, both under motored and fired operation. The proposed 0D mean flow and turbulence model shows the capability to accurately estimate the temporal evolution of the incylinder turbulence for all the considered operating conditions, without requiring any case-dependent tuning, proving its generality and reliability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2016-01-0545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 116visibility views 116 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2016-01-0545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:SAE International Authors: DE BELLIS, VINCENZO; BOZZA, FABIO; Marelli S.; Capobianco M.;doi: 10.4271/2015-01-1720
handle: 11588/602234 , 11567/809535
Downsizing is widely considered one of the main path to reduce the fuel consumption of spark ignition internal combustion engines. As known, despite the reduced size, the required torque and power targets can be attained thanks to an adequate boost level provided by a turbocharger. However, some drawbacks usually arise when the engine operates at full load and low engine speeds. In fact, in the above conditions, the boost pressure and the engine performance are limited since the compressor experiences close-to-surge operation. This occurrence is even greater in case of extremely downsized engines with a reduced number of cylinders and a small intake circuit volume, where the compressor works under strongly unsteady flow conditions and its instantaneous operating point most likely overcomes the steady surge margin. In the paper, both experimental and numerical approaches are followed to describe the behavior of a small in-series turbocharger compressor. Measurements are carried out on the test facility of the University of Genoa. The compressor is included in the in-series intake circuit and a pulsating flow is generated by a motor-driven cylinder head fitted with a variable valve actuation system. Different rotational speeds and various intake valve opening strategies, characterized by different opening durations, are considered. In each investigated operating point, close-to-surge operating conditions are promoted. The unsteady compressor behavior is investigated in terms of instantaneous inlet and outlet static pressures, mass flow rate and turbocharger rotational speed. The numerical activity is performed at the University of Naples. The experimental test-rig is schematized in a commercial 1D code. The compressor is described following an enhanced map-based approach, where proper capacities are placed upstream and downstream the compressor to take into account the mass and energy storage phenomena inside the device. The model is validated for various rotational speeds and valve lift strategy, the numerical/experimental comparisons denoting a satisfactory agreement. After the above validation, the methodology is employed to analyze the effect of the engine rotational speed and of the valve lift strategy on the surge resistance. The results show that, for the higher engine speeds, the compressor simply experiences soft-surge phenomena. On the contrary, below a well specified engine speed, flow reversal within the intake system occur and typical deep-surge cycles arise. In addition, valve lift strategies characterized by shorter opening durations seem to most likely promote the surge onset.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2015-01-1720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2015-01-1720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:SAE International Authors: DE BELLIS, VINCENZO; BOZZA, FABIO; SIANO, DANIELA; Valentino, Gerardo;doi: 10.4271/2016-01-2230
handle: 11588/662458 , 20.500.14243/318131
In this paper, the results of an extensive experimental analysis regarding a twin-cylinder spark-ignition turbocharged engine are employed to build up an advanced 1D model, which includes the effects of cycle-by-cycle variations (CCVs) on the combustion process. Objective of the activity is to numerically estimate the CCV impact primarily on fuel consumption and knock behavior. To this aim, the engine is experimentally characterized in terms of average performance parameters and CCVs at high and low load operation. In particular, both a spark advance and an air-to-fuel ratio (?) sweep are actuated. Acquired pressure signals are processed to estimate the rate of heat release and the main combustion events. Moreover, the Coefficient of Variation of IMEP (CoVIMEP) and of in-cylinder peak pressure (CoVpmax) are evaluated to quantify the cyclic dispersion and identify its dependency on peak pressure position. In parallel, the experimentally tested engine is fully schematized in a 1D framework. The 1D model, developed in the GT-Power(TM) environment, makes use of user defined sub-models for the description of combustion, turbulence and knock phenomena. 1D analyses are carried out for various engine speeds, load levels, ? ratios, and spark timings, without changing any tuning constant. In a first stage, the model is validated in terms of overall engine performance parameters, and ensemble-averaged pressure traces inside the cylinder, and within the intake and exhaust ducts, as well. A more detailed comparison is also performed with reference to the average rate of heat release in different operating conditions. In a subsequent step, the effects of CCVs are introduced in the model in terms of Gaussian distributed modifications of the burning rate, predicted with reference to the ensemble-average operation. Consistently with the experimental data, applied burning rate are modified to simulate a train of pressure cycles statistically equivalent to the measured ones. The influence of the CCVs on the instantaneous peak position, air flow rate, and Indicated Specific Fuel Consumption (ISFC) is consequently investigated on a cycle-bycycle basis, and compared to the average operation. Numerical analyses show that CCVs cause a reduced ISFC penalty, which can be considered significant only in case of delayed combustions and increased CoVs. Knock limited spark advance is also identified with and without CCV, highlighting some additional fuel economy penalties
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2016-01-2230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2016-01-2230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object 2014 ItalyPublisher:Elsevier BV Authors: DE BELLIS, VINCENZO; Severi E.; Fontanesi S.; BOZZA, FABIO;handle: 11588/877402 , 11588/571859 , 11380/1019517
AbstractAs discussed in the part I of this paper, 3D models represent a useful tool for a detailed description of the mean and turbulent flow fields inside the engine cylinder. 3D results are utilized to develop and validate a 0D phenomenological turbulence model, sensitive to the variation of operative parameters such as valve phasing, valve lift, engine speed, etc.In part II of this paper, a 0D phenomenological combustion model is presented, as well. It is based on a fractal description of the flame front and is able to sense each of the fuel properties, the operating conditions (air-to-fuel ratio, spark advance, boost level) and the combustion chamber geometry. In addition, it is capable to properly handle different turbulence levels predicted by means of the turbulence model presented in the part I.The turbulence and combustion models are included, through user routines, in the commercial software GT-Power™. With reference to a small twin-cylinder VVA turbocharged engine, the turbulence/combustion model, once properly tuned, is finally used to calculate in-cylinder pressure traces, rate of heat release and overall engine performance at full load operations and brake specific fuel consumption at part load, as well. An excellent agreement between numerical forecasts and experimental evidence is obtained.
IRIS UNIMORE - Archi... arrow_drop_down IRIS UNIMORE - Archivio istituzionale della ricerca - Università di Modena e Reggio EmiliaConference object . 2014License: CC BY NC NDArchivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014License: CC 0Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 120visibility views 120 download downloads 96 Powered bymore_vert IRIS UNIMORE - Archi... arrow_drop_down IRIS UNIMORE - Archivio istituzionale della ricerca - Università di Modena e Reggio EmiliaConference object . 2014License: CC BY NC NDArchivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014License: CC 0Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 ItalyPublisher:Elsevier BV Authors: BOZZA, FABIO; DE BELLIS, VINCENZO; TEODOSIO, LUIGI;handle: 11588/602236
AbstractIn this work, a promising technique, consisting in an introduction of the external low pressure cooled EGR system, is analyzed by means of a 1D numerical approach with reference to a downsized spark-ignition turbocharged engine. The effects of various EGR amounts are investigated in terms of fuel consumption at full load operations. The proposed results highlight that EGR allows for increasing the knock safety margin. Fuel economy improvements however depend on the overall engine recalibration, consisting in proper settings of the A/F ratio and spark advance, compatible with knock occurrence. The numerical recalibration also accounts for additional limitations on the turbocharger speed, boost level, and turbine inlet temperature. The maximum BSFC improvement by the proposed solution is 5.9%.
Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Italy, GermanyPublisher:SAGE Publications Funded by:DFGDFGMalfi, Enrica; Esposito, Stefania; De Felice, Massimiliano; Pitsch, Heinz; Pischinger, Stefan; De Bellis, Vincenzo;handle: 11588/995716
Considering the strict regulations on the transport sector emissions, predictive models for engine emissions are essential tools to optimize high-efficient low-emission internal combustion engines (ICE) for vehicles. This aspect is of major importance, especially for developing new combustion concepts (e.g. lean, pre-chamber) or using alternative fuels. Among the gaseous emissions from spark-ignition (SI) engines, unburned hydrocarbons (uHC) are the most challenging species to model due to the complexity of the formation mechanisms. Phenomenological models are successfully used in these cases to predict emissions with a reduced computational effort. In this work, uHC phenomenological model approaches by the authors are further developed to improve the model predictivity for multiple variations including engine design, engine operating parameters, as well as different fuels and ignition methods. The model accounts for uHC contributions from piston top-land crevice, wall flame quenching, oil film fuel adsorption/desorption and features a tabulated-chemistry approach to describe uHC post-oxidation. With the support of 3D-CFD simulations, multiple novel modelling assumptions are developed and verified. The model is validated against an extensive measurement database obtained with two small-bore single-cylinder engines (SCE) fuelled with gasoline-like fuel, one with SI and one with pre-chamber, as well as against data from two different ultra-lean large-bore engines fuelled with natural gas (one equipped with a pre-chamber and one dual-fuel with a diesel pilot). The model correctly predicts the trends and absolute values of uHC emissions for all the operating conditions and the engines with an accuracy on average of 11.4%. The results demonstrate the general applicability of the model to different engine designs, the correct description of the main mechanisms contributing to fuel partial oxidation, and the potential to be extended to predict unburned fuel emissions with other fuels.
International Journa... arrow_drop_down International Journal of Engine ResearchArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/14680874241255157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Engine ResearchArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/14680874241255157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014 ItalyPublisher:Elsevier BV BOZZA, FABIO; DE BELLIS, VINCENZO; De Masi V.; GIMELLI, ALFREDO; MUCCILLO, MASSIMILIANO;handle: 11588/571860
AbstractModern internal combustion engines (ICEs) are becoming more and more complex in order to achieve not only better power and torque performance, but also to respect the pollutant emissions and the fuel consumption (CO2) limits.The turbocharger, advanced valve actuation systems (VVA) and the EGR circuit allow the ICE's load control together with the traditional throttle valve and spark advance. Thus, an higher number of operating parameters are available for the calibration engineer to achieve the required performance target (minimum fuel consumption at part load, maximum power and torque at full load, etc.). On the other hand, the increased degrees of freedom may frustrate the potentialities of so complex systems because of the effort needed to identify the optimal engine control strategies. The development of proper numerical models may assist and direct the experimental activity in order to reduce the related times and costs.Although VVA solutions could bring a reduction in the specific fuel consumption thanks to an important de-throttling of the intake system, unfortunately they can simultaneously lead to higher noise levels radiated by the intake mouth. In fact, in this case, the pressure waves travelling through the intake ducts are not properly damped by the throttle valve.In this paper a numerical methodology is developed to define the engine calibration and the intake valve lift profile that simultaneously minimize the BSFC and the noise at part load. The engine object of the study is a turbocharged Spark-Ignition Direct Injection (SIDI) ICE equipped by a lost motion valve actuation system for the intake valves. In this study, the commercial 1D thermo fluid-dynamic code GT-PowerTM is provided with user routines for the description of the combustion process and the handing of variable valve lift profiles. The engine model is thus integrated with a commercial optimization code (modeFRONTIERTM) to identify the optimized load control strategies to achieve the set objectives. The proposed methodology is also used for the definition of unconventional valve lift profiles. Particularly, the advantages related to the use of a small pre-lift before the main valve lift profile are estimated compared to a conventional EIVC strategy.
Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 ItalyPublisher:Elsevier BV Authors: DE BELLIS, VINCENZO; GIMELLI, ALFREDO; MUCCILLO, MASSIMILIANO;handle: 11588/649203
AbstractIn the paper, the potentialities offered by an advanced valve lift design are numerically analyzed. In particular, the study is carried out by a 1D approach and regards the characterization of a VVA strategy named “pre-lift” applied to a downsized turbocharged four-cylinder engine. The pre-lift consists of a small, almost constant lift of the intake valve during the exhaust stroke, so to increase the valves overlapping. The results show a benefit on the fuel economy and on the gas-dynamic noise at part load and a substantial increase in the delivered torque at full load, while preserving the fuel consumption.
Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 8 Powered bymore_vert Energy Procedia arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018 ItalyPublisher:SAE International Bozza, Fabio; De Bellis, Vincenzo; Teodosio, Luigi; Tufano, Daniela; Malfi, Enrica;doi: 10.4271/2018-37-0008
handle: 11588/727932
In this work, various techniques are numerically applied to a base engine - vehicle system to estimate their potential CO2 emission reduction. The reference thermal unit is a downsized turbocharged spark-ignition Variable Valve Actuation (VVA) engine, with a Compression Ratio (CR) of 10. In order to improve its fuel consumption, preserving the original full-load torque, various technologies are considered, including an increased CR, an external low-pressure cooled EGR, and a ported Water Injection (WI). The analyses are carried out by a 1D commercial software (GT-PowerTM), enhanced by refined user-models for the description of in-cylinder processes, namely turbulence, combustion, heat transfer and knock. The latter were validated with reference to the base engine architecture in previous activities. To minimize the Brake Specific Fuel Consumption (BSFC) all over the engine operating plane, the control parameters of the base and modified engines are calibrated based on PID controllers. The calibration procedure is also verified with a direct fuel consumption minimization carried out by an external optimizer. The calibration provides the optimal Spark Advance (SA), Air-to-Fuel (A/F) ratio, Waste-Gate (WG) opening, and VVA setting, complying with limitations on knock intensity, turbine inlet temperature, boost level, turbocharger speed and in-cylinder pressure peak. The performance and calibration maps are computed for various combinations of the above technologies, including a two-stage CR system, and are compared to the ones related to the base architecture. The results show that EGR offers some BSFC benefits at low load, mainly thanks to the pumping work reduction, while it is practically ineffective for knock mitigation at high load. On the contrary, WI has the potential to substantially increase the knock resistance, improving the fuel consumption at high load. No substantial advantages are, indeed, detected with WI under knock-free operation. Computed BSFC maps are then embedded in a vehicle model with the aim of estimating the CO2 emission of a segment A vehicle over a WLTC. The proposed results give a clear outlook of the above technique potentials and offer a guideline to assess the trade-off between engine complexity and improved CO2 emission.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2018-37-0008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2018-37-0008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Italy, FrancePublisher:MDPI AG Funded by:EC | EAGLEEC| EAGLEAuthors: Vincenzo De Bellis; Enrica Malfi; Jean-Marc Zaccardi;doi: 10.3390/en14040889
handle: 11588/875616
In recent years, the development of hybrid powertrain allowed to substantially reduce the CO2 and pollutant emissions of vehicles. The optimal management of such power units represents a challenging task since more degrees of freedom are available compared to a conventional pure-thermal engine powertrain. The a priori knowledge of the driving mission allows identifying the actual optimal control strategy at the expense of a quite relevant computational effort. This is realized by the off-line optimization strategies, such as Pontryagin minimum principle—PMP—or dynamic programming. On the other hand, for an on-vehicle application, the driving mission is unknown, and a certain performance degradation must be expected, depending on the degree of simplification and the computational burden of the adopted control strategy. This work is focused on the development of a simplified control strategy, labeled as efficient thermal electric skipping strategy—ETESS, which presents performance similar to off-line strategies, but with a much-reduced computational effort. This is based on the alternative vehicle driving by either thermal engine or electric unit (no power-split between the power units). The ETESS is tested in a “backward-facing” vehicle simulator referring to a segment C car, fitted with a hybrid series-parallel powertrain. The reliability of the method is verified along different driving cycles, sizing, and efficiency of the power unit components and assessed with conventional control strategies. The outcomes put into evidence that ETESS gives fuel consumption close to PMP strategy, with the advantage of a drastically reduced computational time. The ETESS is extended to an online implementation by introducing an adaptative factor, resulting in performance similar to the well-assessed equivalent consumption minimization strategy, preserving the computational effort.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/889/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/889/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:SAE International DE BELLIS, VINCENZO; BOZZA, FABIO; Fontanesi, Stefano; Severi, Elena; Berni, Fabio;doi: 10.4271/2016-01-0545
handle: 11588/633833 , 11380/1107280
It is widely recognized that spatial and temporal evolution of both macro-and micro-turbulent scales inside internal combustion engines affect air-fuel mixing, combustion and pollutants formation. Particularly, in spark ignition engines, tumbling macro-structure induces the generation of a proper turbulence level to sustain the development and propagation of the flame front. As known, 3D-CFD codes are able to describe the evolution of the in-cylinder flow and turbulence fields with good accuracy, although a high computational effort is required. For this reason, only a limited set of operating conditions is usually investigated. On the other hand, thanks to a lower computational burden, 1D codes can be employed to study engine performance in the whole operating domain, despite of a less detailed description of in-cylinder processes. The integration of 1D and 3D approaches appears hence a promising path to combine the advantages of both. In the present paper, a 0D phenomenological mean flow and turbulence model belonging to the K-k model family is presented in detail. The latter is implemented in the GT-PowerTM software under the form of “user routine”. The model is tuned against in-cylinder results provided by 3D-CFD analyses carried out by the Star-CDTM code at two engine speeds under motored operation. In particular, a currently produced twin-cylinder turbocharged VVA engine is analyzed. The 0D model is then validated against further 3D results at various engine speeds and intake valve lifts, including early closure strategies, both under motored and fired operation. The proposed 0D mean flow and turbulence model shows the capability to accurately estimate the temporal evolution of the incylinder turbulence for all the considered operating conditions, without requiring any case-dependent tuning, proving its generality and reliability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2016-01-0545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 116visibility views 116 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2016-01-0545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:SAE International Authors: DE BELLIS, VINCENZO; BOZZA, FABIO; Marelli S.; Capobianco M.;doi: 10.4271/2015-01-1720
handle: 11588/602234 , 11567/809535
Downsizing is widely considered one of the main path to reduce the fuel consumption of spark ignition internal combustion engines. As known, despite the reduced size, the required torque and power targets can be attained thanks to an adequate boost level provided by a turbocharger. However, some drawbacks usually arise when the engine operates at full load and low engine speeds. In fact, in the above conditions, the boost pressure and the engine performance are limited since the compressor experiences close-to-surge operation. This occurrence is even greater in case of extremely downsized engines with a reduced number of cylinders and a small intake circuit volume, where the compressor works under strongly unsteady flow conditions and its instantaneous operating point most likely overcomes the steady surge margin. In the paper, both experimental and numerical approaches are followed to describe the behavior of a small in-series turbocharger compressor. Measurements are carried out on the test facility of the University of Genoa. The compressor is included in the in-series intake circuit and a pulsating flow is generated by a motor-driven cylinder head fitted with a variable valve actuation system. Different rotational speeds and various intake valve opening strategies, characterized by different opening durations, are considered. In each investigated operating point, close-to-surge operating conditions are promoted. The unsteady compressor behavior is investigated in terms of instantaneous inlet and outlet static pressures, mass flow rate and turbocharger rotational speed. The numerical activity is performed at the University of Naples. The experimental test-rig is schematized in a commercial 1D code. The compressor is described following an enhanced map-based approach, where proper capacities are placed upstream and downstream the compressor to take into account the mass and energy storage phenomena inside the device. The model is validated for various rotational speeds and valve lift strategy, the numerical/experimental comparisons denoting a satisfactory agreement. After the above validation, the methodology is employed to analyze the effect of the engine rotational speed and of the valve lift strategy on the surge resistance. The results show that, for the higher engine speeds, the compressor simply experiences soft-surge phenomena. On the contrary, below a well specified engine speed, flow reversal within the intake system occur and typical deep-surge cycles arise. In addition, valve lift strategies characterized by shorter opening durations seem to most likely promote the surge onset.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2015-01-1720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2015-01-1720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:SAE International Authors: DE BELLIS, VINCENZO; BOZZA, FABIO; SIANO, DANIELA; Valentino, Gerardo;doi: 10.4271/2016-01-2230
handle: 11588/662458 , 20.500.14243/318131
In this paper, the results of an extensive experimental analysis regarding a twin-cylinder spark-ignition turbocharged engine are employed to build up an advanced 1D model, which includes the effects of cycle-by-cycle variations (CCVs) on the combustion process. Objective of the activity is to numerically estimate the CCV impact primarily on fuel consumption and knock behavior. To this aim, the engine is experimentally characterized in terms of average performance parameters and CCVs at high and low load operation. In particular, both a spark advance and an air-to-fuel ratio (?) sweep are actuated. Acquired pressure signals are processed to estimate the rate of heat release and the main combustion events. Moreover, the Coefficient of Variation of IMEP (CoVIMEP) and of in-cylinder peak pressure (CoVpmax) are evaluated to quantify the cyclic dispersion and identify its dependency on peak pressure position. In parallel, the experimentally tested engine is fully schematized in a 1D framework. The 1D model, developed in the GT-Power(TM) environment, makes use of user defined sub-models for the description of combustion, turbulence and knock phenomena. 1D analyses are carried out for various engine speeds, load levels, ? ratios, and spark timings, without changing any tuning constant. In a first stage, the model is validated in terms of overall engine performance parameters, and ensemble-averaged pressure traces inside the cylinder, and within the intake and exhaust ducts, as well. A more detailed comparison is also performed with reference to the average rate of heat release in different operating conditions. In a subsequent step, the effects of CCVs are introduced in the model in terms of Gaussian distributed modifications of the burning rate, predicted with reference to the ensemble-average operation. Consistently with the experimental data, applied burning rate are modified to simulate a train of pressure cycles statistically equivalent to the measured ones. The influence of the CCVs on the instantaneous peak position, air flow rate, and Indicated Specific Fuel Consumption (ISFC) is consequently investigated on a cycle-bycycle basis, and compared to the average operation. Numerical analyses show that CCVs cause a reduced ISFC penalty, which can be considered significant only in case of delayed combustions and increased CoVs. Knock limited spark advance is also identified with and without CCV, highlighting some additional fuel economy penalties
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2016-01-2230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2016-01-2230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu