Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: George Karagiannakis; Chrysoula Pagkoura; Eleftherios Halevas; Penelope Baltzopoulou; +1 Authors

    Abstract The present study relates to the preparation and evaluation of small-scale honeycomb structures as compact reactors/heat exchangers via exploitation of the cobalt/cobaltous oxide (Co3O4/CoO) cyclic reduction–oxidation (redox) heat storage scheme. The structures considered included in-house extruded monoliths (pure cobalt oxide and cobalt oxide/alumina composites) and commercial cordierite substrates coated with Co3O4. The samples were subjected to multi-cyclic redox operation under air flow, in the temperature range of 700–1000 °C. Reduction occurred during heating up to 1000 °C, while oxidation took place during cooling. Redox performance was evaluated on the basis of on-line oxygen release/consumption measurements, while continuous monitoring of imposed air flow reactor inlet/outlet temperatures facilitated the preliminary estimation of heat dissipation in the duration and after completion of the exothermic reaction (oxidation). For all samples, redox performance remained stable in the course of multi-cyclic exposure. In terms of heat transfer, there is strong indication that both composition and the geometry of the honeycomb are important. The pure Co3O4 extruded honeycomb exhibited the highest heat dissipation efficiency but suffered from severe deformation upon multi-cyclic operation. The addition of a small amount of alumina in the aforementioned composition (10% on the basis of total initial mass of oxides), particularly when combined with an increase of the honeycomb wall thickness, substantially improved macro-structural stability upon thermal/redox cycling. The Co3O4-coated cordierite monoliths showed essentially the same normalised redox performance with the pure Co3O4 extruded honeycomb, however the overall heat dissipation achieved was lower. Regarding the effect of redox cycling on the structural stability of studied formulations, pure Co3O4 samples exhibited notable swelling. In the case of the extruded body, this resulted to structural collapse while for the coated cordierite honeycomb, expansion of the coating layer led to partial channels blocking. Based on relevant morphological and structural post-analysis, it was concluded that formation of cobalt aluminate largely reduced swelling intensity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    83
    citations83
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: George Karagiannakis; Chrysoula Pagkoura; Eleftherios Halevas; Penelope Baltzopoulou; +1 Authors

    Abstract The present study relates to the preparation and evaluation of small-scale honeycomb structures as compact reactors/heat exchangers via exploitation of the cobalt/cobaltous oxide (Co3O4/CoO) cyclic reduction–oxidation (redox) heat storage scheme. The structures considered included in-house extruded monoliths (pure cobalt oxide and cobalt oxide/alumina composites) and commercial cordierite substrates coated with Co3O4. The samples were subjected to multi-cyclic redox operation under air flow, in the temperature range of 700–1000 °C. Reduction occurred during heating up to 1000 °C, while oxidation took place during cooling. Redox performance was evaluated on the basis of on-line oxygen release/consumption measurements, while continuous monitoring of imposed air flow reactor inlet/outlet temperatures facilitated the preliminary estimation of heat dissipation in the duration and after completion of the exothermic reaction (oxidation). For all samples, redox performance remained stable in the course of multi-cyclic exposure. In terms of heat transfer, there is strong indication that both composition and the geometry of the honeycomb are important. The pure Co3O4 extruded honeycomb exhibited the highest heat dissipation efficiency but suffered from severe deformation upon multi-cyclic operation. The addition of a small amount of alumina in the aforementioned composition (10% on the basis of total initial mass of oxides), particularly when combined with an increase of the honeycomb wall thickness, substantially improved macro-structural stability upon thermal/redox cycling. The Co3O4-coated cordierite monoliths showed essentially the same normalised redox performance with the pure Co3O4 extruded honeycomb, however the overall heat dissipation achieved was lower. Regarding the effect of redox cycling on the structural stability of studied formulations, pure Co3O4 samples exhibited notable swelling. In the case of the extruded body, this resulted to structural collapse while for the coated cordierite honeycomb, expansion of the coating layer led to partial channels blocking. Based on relevant morphological and structural post-analysis, it was concluded that formation of cobalt aluminate largely reduced swelling intensity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    83
    citations83
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: George Karagiannakis; Chrysoula Pagkoura; Eleftherios Halevas; Penelope Baltzopoulou; +1 Authors

    Abstract The present study relates to the preparation and evaluation of small-scale honeycomb structures as compact reactors/heat exchangers via exploitation of the cobalt/cobaltous oxide (Co3O4/CoO) cyclic reduction–oxidation (redox) heat storage scheme. The structures considered included in-house extruded monoliths (pure cobalt oxide and cobalt oxide/alumina composites) and commercial cordierite substrates coated with Co3O4. The samples were subjected to multi-cyclic redox operation under air flow, in the temperature range of 700–1000 °C. Reduction occurred during heating up to 1000 °C, while oxidation took place during cooling. Redox performance was evaluated on the basis of on-line oxygen release/consumption measurements, while continuous monitoring of imposed air flow reactor inlet/outlet temperatures facilitated the preliminary estimation of heat dissipation in the duration and after completion of the exothermic reaction (oxidation). For all samples, redox performance remained stable in the course of multi-cyclic exposure. In terms of heat transfer, there is strong indication that both composition and the geometry of the honeycomb are important. The pure Co3O4 extruded honeycomb exhibited the highest heat dissipation efficiency but suffered from severe deformation upon multi-cyclic operation. The addition of a small amount of alumina in the aforementioned composition (10% on the basis of total initial mass of oxides), particularly when combined with an increase of the honeycomb wall thickness, substantially improved macro-structural stability upon thermal/redox cycling. The Co3O4-coated cordierite monoliths showed essentially the same normalised redox performance with the pure Co3O4 extruded honeycomb, however the overall heat dissipation achieved was lower. Regarding the effect of redox cycling on the structural stability of studied formulations, pure Co3O4 samples exhibited notable swelling. In the case of the extruded body, this resulted to structural collapse while for the coated cordierite honeycomb, expansion of the coating layer led to partial channels blocking. Based on relevant morphological and structural post-analysis, it was concluded that formation of cobalt aluminate largely reduced swelling intensity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    83
    citations83
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: George Karagiannakis; Chrysoula Pagkoura; Eleftherios Halevas; Penelope Baltzopoulou; +1 Authors

    Abstract The present study relates to the preparation and evaluation of small-scale honeycomb structures as compact reactors/heat exchangers via exploitation of the cobalt/cobaltous oxide (Co3O4/CoO) cyclic reduction–oxidation (redox) heat storage scheme. The structures considered included in-house extruded monoliths (pure cobalt oxide and cobalt oxide/alumina composites) and commercial cordierite substrates coated with Co3O4. The samples were subjected to multi-cyclic redox operation under air flow, in the temperature range of 700–1000 °C. Reduction occurred during heating up to 1000 °C, while oxidation took place during cooling. Redox performance was evaluated on the basis of on-line oxygen release/consumption measurements, while continuous monitoring of imposed air flow reactor inlet/outlet temperatures facilitated the preliminary estimation of heat dissipation in the duration and after completion of the exothermic reaction (oxidation). For all samples, redox performance remained stable in the course of multi-cyclic exposure. In terms of heat transfer, there is strong indication that both composition and the geometry of the honeycomb are important. The pure Co3O4 extruded honeycomb exhibited the highest heat dissipation efficiency but suffered from severe deformation upon multi-cyclic operation. The addition of a small amount of alumina in the aforementioned composition (10% on the basis of total initial mass of oxides), particularly when combined with an increase of the honeycomb wall thickness, substantially improved macro-structural stability upon thermal/redox cycling. The Co3O4-coated cordierite monoliths showed essentially the same normalised redox performance with the pure Co3O4 extruded honeycomb, however the overall heat dissipation achieved was lower. Regarding the effect of redox cycling on the structural stability of studied formulations, pure Co3O4 samples exhibited notable swelling. In the case of the extruded body, this resulted to structural collapse while for the coated cordierite honeycomb, expansion of the coating layer led to partial channels blocking. Based on relevant morphological and structural post-analysis, it was concluded that formation of cobalt aluminate largely reduced swelling intensity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    83
    citations83
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph