- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Shuming Wang; Shuming Wang; Tsan Sheng Adam Ng; Jie Xiong;Abstract This paper considers a methodology for economic feasibility analysis of a decentralized hybrid WTE (waste-to-energy) system, when input waste streams and technical parameters can be uncertain. A hybrid WTE system is decentralized when there are possibly different owners of the waste treatment units. A two-stage stochastic programming model is proposed to evaluate and optimize the joint probability that each installed unit is able to achieve its own financial target, while adhering to stipulated environmental requirements. A case study is performed based on the city state of Singapore. The results show that, the proposed model can help provide the effective decision support for policy-makers in evaluating the appropriate technological mix of WTE alternatives. Furthermore, the designs generated by the proposed model can significantly improve the economic feasibility of the overall system without sacrificing certain installed unit's financial position. Finally, the optimized hybrid WTE system obtained by the proposed model achieves an optimal mix and balance of implemented treatment technologies, which is more practical than the current incineration only design in the MSW (municipal solid waste) management future in Singapore.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.01.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.01.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SingaporePublisher:Informa UK Limited Authors: Jie Xiong; Tsan Sheng Ng; Zhou He; Bo Fan;A municipal solid waste management system is symbiotic when there exists physical exchange of material or by-products between different treatment units. We propose a mathematical model for studying the interactive behaviour of different waste treatment operators in a symbiotic environment. Each operator is a self-interested entity, who sets his gate fee charge to maximise his own payoff. We study the properties and gate fee strategies of the operators, and also perform sensitivity analysis on various model parameters to discuss the local operator behaviour and the effects of various intervention strategies. We also propose a numerical algorithm to solve the model, yielding the optimal equilibrium gate fee charges, payoff and market share levels of different operators. Finally, computational studies based on a two-unit scenario in a case study of organic waste recycling is performed to demonstrate the interactive and dynamic behaviours of different operators. Our results strongly suggest that, to improve n...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00207543.2017.1312588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00207543.2017.1312588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Shuming Wang; Shuming Wang; Tsan Sheng Adam Ng; Jie Xiong;Abstract This paper considers a methodology for economic feasibility analysis of a decentralized hybrid WTE (waste-to-energy) system, when input waste streams and technical parameters can be uncertain. A hybrid WTE system is decentralized when there are possibly different owners of the waste treatment units. A two-stage stochastic programming model is proposed to evaluate and optimize the joint probability that each installed unit is able to achieve its own financial target, while adhering to stipulated environmental requirements. A case study is performed based on the city state of Singapore. The results show that, the proposed model can help provide the effective decision support for policy-makers in evaluating the appropriate technological mix of WTE alternatives. Furthermore, the designs generated by the proposed model can significantly improve the economic feasibility of the overall system without sacrificing certain installed unit's financial position. Finally, the optimized hybrid WTE system obtained by the proposed model achieves an optimal mix and balance of implemented treatment technologies, which is more practical than the current incineration only design in the MSW (municipal solid waste) management future in Singapore.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.01.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.01.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SingaporePublisher:Informa UK Limited Authors: Jie Xiong; Tsan Sheng Ng; Zhou He; Bo Fan;A municipal solid waste management system is symbiotic when there exists physical exchange of material or by-products between different treatment units. We propose a mathematical model for studying the interactive behaviour of different waste treatment operators in a symbiotic environment. Each operator is a self-interested entity, who sets his gate fee charge to maximise his own payoff. We study the properties and gate fee strategies of the operators, and also perform sensitivity analysis on various model parameters to discuss the local operator behaviour and the effects of various intervention strategies. We also propose a numerical algorithm to solve the model, yielding the optimal equilibrium gate fee charges, payoff and market share levels of different operators. Finally, computational studies based on a two-unit scenario in a case study of organic waste recycling is performed to demonstrate the interactive and dynamic behaviours of different operators. Our results strongly suggest that, to improve n...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00207543.2017.1312588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00207543.2017.1312588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu