- home
- Advanced Search
- Energy Research
- 6. Clean water
- Energy Research
- 6. Clean water
description Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Springer Science and Business Media LLC Authors: Bernhard Tischbein; Christopher Martius; Christopher Martius; Usman Khalid Awan; +1 AuthorsBernhard Tischbein; Christopher Martius; Christopher Martius; Usman Khalid Awan; Usman Khalid Awan;handle: 10568/93464
Capillary rise represents an often neglected fraction of the water budget that contributes to crop water demand in situations of shallow groundwater levels. Such a situation is typical in irrigated areas of Central Asia where water from capillary rise is exploited by farmers to meet production targets in Uzbekistan under uncertain water supply. This leads to higher water inputs than needed and creates a vicious cycle of salinization that ultimately degrades the agricultural land. In this study, capillary rise is quantified at different spatial scales in the Shomakhulum Water Users Association (WUA), situated in the southwest of Khorezm, Uzbekistan. The mathematical model HYDRUS-1D was used to compute the capillary rise at field level for three major crops (cotton, wheat and vegetables) on six different hydrological response units (HRUs). These six HRUs having homogenous groundwater levels (1–2 m beneath the soil surface) and soil texture were created using GIS and remote-sensing techniques. Capillary rise from these HRU was then up-scaled to WUA level using a simple aggregation approach. The groundwater levels simulated by FEFLOW-3D model for these HRUs in a parallel study under four improved irrigation efficiency scenarios (S-A: current irrigation efficiency or business-as-usual, S-B: improved conveyance efficiency, S-C: increased application efficiency and S-D: improved conveyance and application efficiency) were then introduced into HYDRUS-1D to quantify the impact of improved efficiencies on the capillary rise contribution. Results show that the HRUs with shallow groundwater-silt loam (S-SL), medium groundwater-silt loam (M-SL) and deep groundwater-silty clay loam (D-SCL) have capillary rise contribution of 28, 23 and 16 % of the cotton water requirements, 12, 5 and 0 % of the vegetable water requirements and 9, 6 and 0 % for the wheat water requirements, respectively. Results of the scenarios for the whole WUA show that the maximum capillary rise contribution (19 %) to the average of all crops in the WUA was for the S-A scenario, which reduced to 17, 11 and 9 % for S-B, S-C and S-D, respectively. Therefore, it is recommended that before any surface water intervention or drainage re-design, water managers should be informed about the impacts on groundwater hydrology and hence should adopt appropriate strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00271-014-0441-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00271-014-0441-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 France, France, ItalyPublisher:Elsevier BV Authors: Mariya Aleksandrova; John P.A. Lamers; Christopher Martius; Bernhard Tischbein;handle: 10278/43026 , 10568/95309
Climate change, land degradation and drought affect millions of people living in drylands worldwide. With its food security depending almost entirely on irrigated agriculture, Central Asia is one of the arid regions highly vulnerable to water scarcity. Previous research of land and water use in the region has focused on improving water-use efficiency, soil management and identifying technical, institutional and agricultural innovations. However, vulnerability to climate change has rarely been considered, in spite of the imminent risks due to a higher-than-average warming perspective and the predicted melting of glaciers, which will greatly affect the availability of irrigation water. Using the Khorezm region in the irrigated lowlands of northwest Uzbekistan as an example, we identify the local patterns of vulnerability to climate variability and extremes. We look at on-going environmental degradation, water-use inefficiency, and barriers to climate change adaptation and mitigation, and based on an extensive review of research evidence from the region, we present concrete examples of initiatives for building resilience and improving climate risk management. These include improving water use efficiency and changing the cropping patterns that have a high potential to decrease the exposure and sensitivity of rural communities to climate risks. In addition, changes in land use such as the afforestation of degraded croplands, and introducing resource-smart cultivation practices such as conservation agriculture, may strengthen the capacity of farmers and institutions to respond to climate challenges. As these can be out-scaled to similar environments, i.e. the irrigated cotton and wheat growing lowland regions in Central Asia and the Caucasus, these findings may be relevant for regions beyond the immediate geographic area from which it draws its examples.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2014.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2014.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2011 GermanyPublisher:Springer Netherlands Rücker, Gerd; Conrad, Christopher; Ibragimov , Nazirbay; Kienzler, Kirsten; Ibrakhimov, Mirzahayot; Martius, Christopher; Lamers, John P.A.;The spatial distribution of cotton yields in the Khorezm region exhibits larger differences than those indicated in statistics on a district scale. However, the yield distribution within districts and farms, and possible factors correlating with this pattern, are unclear. Here, we map and characterize the detailed spatial variation of cotton yield at a pixel size of 250 m and analyse relationships between cotton yield, environmental factors, hydrological infrastructure, and water management in Khorezm for the year 2002. A remote-sensing based yield modelling approach was employed using satellite data of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and the MODerate resolution Imaging Spectroradiometer (MODIS). Regional GIS maps were developed for environmental factors such as soil texture and groundwater table, hydrological infrastructure (distance of water use associations to irrigation inlets, irrigation channel density, and seasonal actual evapotranspiration). Well-pronounced relationships were found between cotton yield and the factors soil texture, irrigation infrastructure and seasonal evapotranspiration, while the correlation was weaker between cotton yield and groundwater table. These correlations were spatially analyzed and interpreted to identify areas suitable for cotton cultivation. Soil zones with lower cotton yield and areas with an irrigation infrastructure less suitable for cotton were spatially demarcated; for these areas, alternative land use strategies are suggested. Overall, this study suggests that improved surface and groundwater management should be targeted to specific sites within certain soil zones, and needs to be delivered timely according to crop requirements. These are key regional management strategies for improving cotton yield on a regional scale in Khorezm. We demonstrated that information on where and when water management improvements should take place can be suitably provided for larger areas with a remote sensing approach. The remote sensing-based monitoring system allows evaluating area-wide indicators for irrigation performance on different scales. The information thus gained can then be delivered to local water users associations for their adaptation.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-94...Part of book or chapter of book . 2011 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-94-007-1963-7_4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-94...Part of book or chapter of book . 2011 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-94-007-1963-7_4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 Australia, GermanyPublisher:Wiley Scheer, Clemens; Wassmann, Reiner; Kienzler, Kirsten; Ibragimov, Nazar; Lamers, John; Martius, Christopher;AbstractLand use and agricultural practices can result in important contributions to the global source strength of atmospheric nitrous oxide (N2O) and methane (CH4). However, knowledge of gas flux from irrigated agriculture is very limited. From April 2005 to October 2006, a study was conducted in the Aral Sea Basin, Uzbekistan, to quantify and compare emissions of N2O and CH4 in various annual and perennial land‐use systems: irrigated cotton, winter wheat and rice crops, a poplar plantation and a natural Tugai (floodplain) forest. In the annual systems, average N2O emissions ranged from 10 to 150 μg N2O‐N m−2 h−1 with highest N2O emissions in the cotton fields, covering a similar range of previous studies from irrigated cropping systems. Emission factors (uncorrected for background emission), used to determine the fertilizer‐induced N2O emission as a percentage of N fertilizer applied, ranged from 0.2% to 2.6%. Seasonal variations in N2O emissions were principally controlled by fertilization and irrigation management. Pulses of N2O emissions occurred after concomitant N‐fertilizer application and irrigation. The unfertilized poplar plantation showed high N2O emissions over the entire study period (30 μg N2O‐N m−2 h−1), whereas only negligible fluxes of N2O (<2 μg N2O‐N m−2 h−1) occurred in the Tugai. Significant CH4 fluxes only were determined from the flooded rice field: Fluxes were low with mean flux rates of 32 mg CH4 m−2 day−1 and a low seasonal total of 35.2 kg CH4 ha−1. The global warming potential (GWP) of the N2O and CH4 fluxes was highest under rice and cotton, with seasonal changes between 500 and 3000 kg CO2 eq. ha−1. The biennial cotton–wheat–rice crop rotation commonly practiced in the region would average a GWP of 2500 kg CO2 eq. ha−1 yr−1. The analyses point out opportunities for reducing the GWP of these irrigated agricultural systems by (i) optimization of fertilization and irrigation practices and (ii) conversion of annual cropping systems into perennial forest plantations, especially on less profitable, marginal lands.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01631.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01631.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, France, Australia, Australia, Belgium, South AfricaPublisher:MDPI AG Ademola K. Braimoh; Luna Bharati; Hossein Azadi; Hossein Azadi; Anik Bhaduri; Asia Khamzina; Christopher Martius; Fatemeh Taheri; Terry Sunderland; Terry Sunderland; Paul L. G. Vlek;doi: 10.3390/su9122196
handle: 1854/LU-8545580 , 10568/92084 , 10019.1/105337 , 10072/373427 , 10568/89924
doi: 10.3390/su9122196
handle: 1854/LU-8545580 , 10568/92084 , 10019.1/105337 , 10072/373427 , 10568/89924
Land provides a host of ecosystem services, of which the provisioning services are often considered paramount. As the demand for agricultural products multiplies, other ecosystem services are being degraded or lost entirely. Finding a sustainable trade-off between food production and one or more of other ecosystem services, given the variety of stakeholders, is a matter of optimizing land use in a dynamic and complex socio-ecological system. Land degradation reduces our options to meet both food demands and environmental needs. In order to illustrate this trade-off dilemma, four representative services, carbon sinks, water storage, biodiversity, and space for urbanization, are discussed here based on a review of contemporary literature that cuts across the domain of ecosystem services that are provided by land. Agricultural research will have to expand its focus from the field to the landscape level and in the process examine the cost of production that internalizes environmental costs. In some situations, the public cost of agriculture in marginal environments outweighs the private gains, even with the best technologies in place. Land use and city planners will increasingly have to address the cost of occupying productive agricultural land or the conversion of natural habitats. Landscape designs and urban planning should aim for the preservation of agricultural land and the integrated management of land resources by closing water and nutrient cycles, and by restoring biodiversity.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92084Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10072/373427Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/89924Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2017Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92084Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10072/373427Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/89924Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2017Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Authors: Bobojonov, Ihtiyor; Berg, Ernst; Franz-Vasdekic, Jennifer; Martius, Christopher; +1 AuthorsBobojonov, Ihtiyor; Berg, Ernst; Franz-Vasdekic, Jennifer; Martius, Christopher; Lamers, John P. A.;handle: 10568/89872
AbstractA decline in water availability due to rising temperatures and growing water demand presents significant and unique challenges to agricultural producers in Uzbekistan. This study investigates the impact of climate change on farm revenues and water use efficiencies in Western Uzbekistan. A spatially explicit stochastic optimization model is used to analyze crop and water allocation decisions under conditions of uncertainty for irrigation water availability in the area for the first time.Results show farmers’ income could fall by as much as 25% with a 3.2°C temperature increase and a 15% decline in irrigation. Farmers located in the tail end of the irrigation system could lose an even greater share of their revenues. A more conservative increase in temperature could increase farmer income by as much as 46% with a 2.2° temperature increase and only 8% decline in irrigation water since some crops benefit from extended vegetation periods. Under both pessimistic and optimistic scenarios, environmental challenges due to shallow groundwater tables may improve associated with enhanced water use efficiency.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/89872Data sources: Bielefeld Academic Search Engine (BASE)Climate Risk ManagementArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crm.2016.05.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/89872Data sources: Bielefeld Academic Search Engine (BASE)Climate Risk ManagementArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crm.2016.05.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 France, United States, FrancePublisher:IOP Publishing Authors: Christopher Martius; Walter E. Baethgen; Miguel Pinedo-Vasquez; Miguel Pinedo-Vasquez; +3 AuthorsChristopher Martius; Walter E. Baethgen; Miguel Pinedo-Vasquez; Miguel Pinedo-Vasquez; Katia Fernandes; Louis V. Verchot; Victor Hugo Gutierrez-Velez;handle: 10568/81140
In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation. This was the case of the events of 1997 and 2015 that resulted in months- long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated the impact of temperature on fires and found that when the July–October (JASO) period is anomalously dry, the sensitivity of fires to temperature is modest. In contrast, under normal-to-wet conditions, fire probability increases sharply when JASO is anomalously warm. This describes a regime in which an active fire season is not limited to drought years. Greater susceptibility to fires in response to a warmer environment finds support in the high evapotranspiration rates observed in normal-to-wet and warm conditions in Indonesia. We also find that fire probability in wet JASOs would be considerably less sensitive to temperature were not for the added effect of recent positive trends. Near-term regional climate projections reveal that, despite negligible changes in precipitation, a continuing warming trend will heighten fire probability over the next few decades especially in non-drought years. Mild fire seasons currently observed in association with wet conditions and cool temperatures will become rare events in Indonesia.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BYFull-Text: https://hdl.handle.net/10568/81140Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2017Full-Text: https://doi.org/10.7916/D8CC1620Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa6884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BYFull-Text: https://hdl.handle.net/10568/81140Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2017Full-Text: https://doi.org/10.7916/D8CC1620Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa6884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:Informa UK Limited Bobojonov, Ihtiyor; Lamers, J.P.A.; Bekchanov, Maksud; Djanibekov, Nodir; Franz-Vasdekic, Jennifer; Ruzimov, J; Martius, C.;handle: 10568/95459
This article describes various opportunities but also constraints to greater crop diversification, and the impact on local sustainability in the Khorezm province of Uzbekistan in the Aral Sea basin. At present, approximately 70% of the area in this study region is sown to irrigated cotton and winter wheat under the so-called state mandate. We present evidence of the benefits of moving away from this approach toward more diversified farming with an increasing area of alternative crops in the selected region. We report on a series of studies that included a) crop suitability screening based on secondary data, b) joint farmer experiments, and c) a mathematical simulation model with the overarching objective to assess potential benefits and constraints for crop diversification. The findings of this long-term, multiyear, and multidisciplinary approach show that greater crop diversity can increase water use efficiency, and secure farm income in dryland areas prone to water scarcity and soil salinity. In additio...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21683565.2013.775539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21683565.2013.775539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Springer Science and Business Media LLC Authors: Bernhard Tischbein; Christopher Martius; Christopher Martius; Usman Khalid Awan; +1 AuthorsBernhard Tischbein; Christopher Martius; Christopher Martius; Usman Khalid Awan; Usman Khalid Awan;handle: 10568/93464
Capillary rise represents an often neglected fraction of the water budget that contributes to crop water demand in situations of shallow groundwater levels. Such a situation is typical in irrigated areas of Central Asia where water from capillary rise is exploited by farmers to meet production targets in Uzbekistan under uncertain water supply. This leads to higher water inputs than needed and creates a vicious cycle of salinization that ultimately degrades the agricultural land. In this study, capillary rise is quantified at different spatial scales in the Shomakhulum Water Users Association (WUA), situated in the southwest of Khorezm, Uzbekistan. The mathematical model HYDRUS-1D was used to compute the capillary rise at field level for three major crops (cotton, wheat and vegetables) on six different hydrological response units (HRUs). These six HRUs having homogenous groundwater levels (1–2 m beneath the soil surface) and soil texture were created using GIS and remote-sensing techniques. Capillary rise from these HRU was then up-scaled to WUA level using a simple aggregation approach. The groundwater levels simulated by FEFLOW-3D model for these HRUs in a parallel study under four improved irrigation efficiency scenarios (S-A: current irrigation efficiency or business-as-usual, S-B: improved conveyance efficiency, S-C: increased application efficiency and S-D: improved conveyance and application efficiency) were then introduced into HYDRUS-1D to quantify the impact of improved efficiencies on the capillary rise contribution. Results show that the HRUs with shallow groundwater-silt loam (S-SL), medium groundwater-silt loam (M-SL) and deep groundwater-silty clay loam (D-SCL) have capillary rise contribution of 28, 23 and 16 % of the cotton water requirements, 12, 5 and 0 % of the vegetable water requirements and 9, 6 and 0 % for the wheat water requirements, respectively. Results of the scenarios for the whole WUA show that the maximum capillary rise contribution (19 %) to the average of all crops in the WUA was for the S-A scenario, which reduced to 17, 11 and 9 % for S-B, S-C and S-D, respectively. Therefore, it is recommended that before any surface water intervention or drainage re-design, water managers should be informed about the impacts on groundwater hydrology and hence should adopt appropriate strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00271-014-0441-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00271-014-0441-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 France, France, ItalyPublisher:Elsevier BV Authors: Mariya Aleksandrova; John P.A. Lamers; Christopher Martius; Bernhard Tischbein;handle: 10278/43026 , 10568/95309
Climate change, land degradation and drought affect millions of people living in drylands worldwide. With its food security depending almost entirely on irrigated agriculture, Central Asia is one of the arid regions highly vulnerable to water scarcity. Previous research of land and water use in the region has focused on improving water-use efficiency, soil management and identifying technical, institutional and agricultural innovations. However, vulnerability to climate change has rarely been considered, in spite of the imminent risks due to a higher-than-average warming perspective and the predicted melting of glaciers, which will greatly affect the availability of irrigation water. Using the Khorezm region in the irrigated lowlands of northwest Uzbekistan as an example, we identify the local patterns of vulnerability to climate variability and extremes. We look at on-going environmental degradation, water-use inefficiency, and barriers to climate change adaptation and mitigation, and based on an extensive review of research evidence from the region, we present concrete examples of initiatives for building resilience and improving climate risk management. These include improving water use efficiency and changing the cropping patterns that have a high potential to decrease the exposure and sensitivity of rural communities to climate risks. In addition, changes in land use such as the afforestation of degraded croplands, and introducing resource-smart cultivation practices such as conservation agriculture, may strengthen the capacity of farmers and institutions to respond to climate challenges. As these can be out-scaled to similar environments, i.e. the irrigated cotton and wheat growing lowland regions in Central Asia and the Caucasus, these findings may be relevant for regions beyond the immediate geographic area from which it draws its examples.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2014.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2014.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2011 GermanyPublisher:Springer Netherlands Rücker, Gerd; Conrad, Christopher; Ibragimov , Nazirbay; Kienzler, Kirsten; Ibrakhimov, Mirzahayot; Martius, Christopher; Lamers, John P.A.;The spatial distribution of cotton yields in the Khorezm region exhibits larger differences than those indicated in statistics on a district scale. However, the yield distribution within districts and farms, and possible factors correlating with this pattern, are unclear. Here, we map and characterize the detailed spatial variation of cotton yield at a pixel size of 250 m and analyse relationships between cotton yield, environmental factors, hydrological infrastructure, and water management in Khorezm for the year 2002. A remote-sensing based yield modelling approach was employed using satellite data of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and the MODerate resolution Imaging Spectroradiometer (MODIS). Regional GIS maps were developed for environmental factors such as soil texture and groundwater table, hydrological infrastructure (distance of water use associations to irrigation inlets, irrigation channel density, and seasonal actual evapotranspiration). Well-pronounced relationships were found between cotton yield and the factors soil texture, irrigation infrastructure and seasonal evapotranspiration, while the correlation was weaker between cotton yield and groundwater table. These correlations were spatially analyzed and interpreted to identify areas suitable for cotton cultivation. Soil zones with lower cotton yield and areas with an irrigation infrastructure less suitable for cotton were spatially demarcated; for these areas, alternative land use strategies are suggested. Overall, this study suggests that improved surface and groundwater management should be targeted to specific sites within certain soil zones, and needs to be delivered timely according to crop requirements. These are key regional management strategies for improving cotton yield on a regional scale in Khorezm. We demonstrated that information on where and when water management improvements should take place can be suitably provided for larger areas with a remote sensing approach. The remote sensing-based monitoring system allows evaluating area-wide indicators for irrigation performance on different scales. The information thus gained can then be delivered to local water users associations for their adaptation.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-94...Part of book or chapter of book . 2011 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-94-007-1963-7_4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-94...Part of book or chapter of book . 2011 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-94-007-1963-7_4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 Australia, GermanyPublisher:Wiley Scheer, Clemens; Wassmann, Reiner; Kienzler, Kirsten; Ibragimov, Nazar; Lamers, John; Martius, Christopher;AbstractLand use and agricultural practices can result in important contributions to the global source strength of atmospheric nitrous oxide (N2O) and methane (CH4). However, knowledge of gas flux from irrigated agriculture is very limited. From April 2005 to October 2006, a study was conducted in the Aral Sea Basin, Uzbekistan, to quantify and compare emissions of N2O and CH4 in various annual and perennial land‐use systems: irrigated cotton, winter wheat and rice crops, a poplar plantation and a natural Tugai (floodplain) forest. In the annual systems, average N2O emissions ranged from 10 to 150 μg N2O‐N m−2 h−1 with highest N2O emissions in the cotton fields, covering a similar range of previous studies from irrigated cropping systems. Emission factors (uncorrected for background emission), used to determine the fertilizer‐induced N2O emission as a percentage of N fertilizer applied, ranged from 0.2% to 2.6%. Seasonal variations in N2O emissions were principally controlled by fertilization and irrigation management. Pulses of N2O emissions occurred after concomitant N‐fertilizer application and irrigation. The unfertilized poplar plantation showed high N2O emissions over the entire study period (30 μg N2O‐N m−2 h−1), whereas only negligible fluxes of N2O (<2 μg N2O‐N m−2 h−1) occurred in the Tugai. Significant CH4 fluxes only were determined from the flooded rice field: Fluxes were low with mean flux rates of 32 mg CH4 m−2 day−1 and a low seasonal total of 35.2 kg CH4 ha−1. The global warming potential (GWP) of the N2O and CH4 fluxes was highest under rice and cotton, with seasonal changes between 500 and 3000 kg CO2 eq. ha−1. The biennial cotton–wheat–rice crop rotation commonly practiced in the region would average a GWP of 2500 kg CO2 eq. ha−1 yr−1. The analyses point out opportunities for reducing the GWP of these irrigated agricultural systems by (i) optimization of fertilization and irrigation practices and (ii) conversion of annual cropping systems into perennial forest plantations, especially on less profitable, marginal lands.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01631.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01631.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, France, Australia, Australia, Belgium, South AfricaPublisher:MDPI AG Ademola K. Braimoh; Luna Bharati; Hossein Azadi; Hossein Azadi; Anik Bhaduri; Asia Khamzina; Christopher Martius; Fatemeh Taheri; Terry Sunderland; Terry Sunderland; Paul L. G. Vlek;doi: 10.3390/su9122196
handle: 1854/LU-8545580 , 10568/92084 , 10019.1/105337 , 10072/373427 , 10568/89924
doi: 10.3390/su9122196
handle: 1854/LU-8545580 , 10568/92084 , 10019.1/105337 , 10072/373427 , 10568/89924
Land provides a host of ecosystem services, of which the provisioning services are often considered paramount. As the demand for agricultural products multiplies, other ecosystem services are being degraded or lost entirely. Finding a sustainable trade-off between food production and one or more of other ecosystem services, given the variety of stakeholders, is a matter of optimizing land use in a dynamic and complex socio-ecological system. Land degradation reduces our options to meet both food demands and environmental needs. In order to illustrate this trade-off dilemma, four representative services, carbon sinks, water storage, biodiversity, and space for urbanization, are discussed here based on a review of contemporary literature that cuts across the domain of ecosystem services that are provided by land. Agricultural research will have to expand its focus from the field to the landscape level and in the process examine the cost of production that internalizes environmental costs. In some situations, the public cost of agriculture in marginal environments outweighs the private gains, even with the best technologies in place. Land use and city planners will increasingly have to address the cost of occupying productive agricultural land or the conversion of natural habitats. Landscape designs and urban planning should aim for the preservation of agricultural land and the integrated management of land resources by closing water and nutrient cycles, and by restoring biodiversity.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92084Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10072/373427Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/89924Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2017Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92084Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10072/373427Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/89924Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2017Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Authors: Bobojonov, Ihtiyor; Berg, Ernst; Franz-Vasdekic, Jennifer; Martius, Christopher; +1 AuthorsBobojonov, Ihtiyor; Berg, Ernst; Franz-Vasdekic, Jennifer; Martius, Christopher; Lamers, John P. A.;handle: 10568/89872
AbstractA decline in water availability due to rising temperatures and growing water demand presents significant and unique challenges to agricultural producers in Uzbekistan. This study investigates the impact of climate change on farm revenues and water use efficiencies in Western Uzbekistan. A spatially explicit stochastic optimization model is used to analyze crop and water allocation decisions under conditions of uncertainty for irrigation water availability in the area for the first time.Results show farmers’ income could fall by as much as 25% with a 3.2°C temperature increase and a 15% decline in irrigation. Farmers located in the tail end of the irrigation system could lose an even greater share of their revenues. A more conservative increase in temperature could increase farmer income by as much as 46% with a 2.2° temperature increase and only 8% decline in irrigation water since some crops benefit from extended vegetation periods. Under both pessimistic and optimistic scenarios, environmental challenges due to shallow groundwater tables may improve associated with enhanced water use efficiency.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/89872Data sources: Bielefeld Academic Search Engine (BASE)Climate Risk ManagementArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crm.2016.05.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/89872Data sources: Bielefeld Academic Search Engine (BASE)Climate Risk ManagementArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crm.2016.05.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 France, United States, FrancePublisher:IOP Publishing Authors: Christopher Martius; Walter E. Baethgen; Miguel Pinedo-Vasquez; Miguel Pinedo-Vasquez; +3 AuthorsChristopher Martius; Walter E. Baethgen; Miguel Pinedo-Vasquez; Miguel Pinedo-Vasquez; Katia Fernandes; Louis V. Verchot; Victor Hugo Gutierrez-Velez;handle: 10568/81140
In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation. This was the case of the events of 1997 and 2015 that resulted in months- long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated the impact of temperature on fires and found that when the July–October (JASO) period is anomalously dry, the sensitivity of fires to temperature is modest. In contrast, under normal-to-wet conditions, fire probability increases sharply when JASO is anomalously warm. This describes a regime in which an active fire season is not limited to drought years. Greater susceptibility to fires in response to a warmer environment finds support in the high evapotranspiration rates observed in normal-to-wet and warm conditions in Indonesia. We also find that fire probability in wet JASOs would be considerably less sensitive to temperature were not for the added effect of recent positive trends. Near-term regional climate projections reveal that, despite negligible changes in precipitation, a continuing warming trend will heighten fire probability over the next few decades especially in non-drought years. Mild fire seasons currently observed in association with wet conditions and cool temperatures will become rare events in Indonesia.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BYFull-Text: https://hdl.handle.net/10568/81140Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2017Full-Text: https://doi.org/10.7916/D8CC1620Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa6884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BYFull-Text: https://hdl.handle.net/10568/81140Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2017Full-Text: https://doi.org/10.7916/D8CC1620Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa6884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:Informa UK Limited Bobojonov, Ihtiyor; Lamers, J.P.A.; Bekchanov, Maksud; Djanibekov, Nodir; Franz-Vasdekic, Jennifer; Ruzimov, J; Martius, C.;handle: 10568/95459
This article describes various opportunities but also constraints to greater crop diversification, and the impact on local sustainability in the Khorezm province of Uzbekistan in the Aral Sea basin. At present, approximately 70% of the area in this study region is sown to irrigated cotton and winter wheat under the so-called state mandate. We present evidence of the benefits of moving away from this approach toward more diversified farming with an increasing area of alternative crops in the selected region. We report on a series of studies that included a) crop suitability screening based on secondary data, b) joint farmer experiments, and c) a mathematical simulation model with the overarching objective to assess potential benefits and constraints for crop diversification. The findings of this long-term, multiyear, and multidisciplinary approach show that greater crop diversity can increase water use efficiency, and secure farm income in dryland areas prone to water scarcity and soil salinity. In additio...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21683565.2013.775539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21683565.2013.775539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu