- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:EC | I-ThERMEC| I-ThERMBianchi, G; Kennedy, S; Zaher, O; Tassou, S; Miller, J; Jouhara, H;Research presented in this paper has received funding from: i) the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 680599, ii) Innovate UK (Project No. 61995-431253, iii) Engineering and Physical Sciences Research Council UK (EPSRC), Grant No. EP/P510294/1; iv) Research Councils UK (RCUK), Grant No. EP/K011820/1. The authors would like to acknowledge the financial support from these organisations as well as contributions from industry partners: Spirax Sarco Engineering PLC, Howden Compressors Ltd, Tata Steel, Artic Circle Ltd, Cooper Tires Ltd, Industrial Power Units Ltd. The authors also acknowledge contributions from Mr. Jonathan Harrison and Mr. Marek Lehocky of Gamma Technologies during the model development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Elsevier BV Authors: Valentina Olabi; Abdulrahman Alhajeri; Hussam Jouhara;Highlights: • A solar-powered green hydrogen supply chain is designed for Kuwait in 2050. • Cost, carbon footprint, and safety are optimised for a hydrogen supply chain. • A hydrogen gas supply chain is generally more favourable than liquid. • Higher demand amplifies efficiency gains and operational savings. • Pipelines and salt caverns emerge as optimal transport and storage choices. Supplementary data are available online at: https://www.sciencedirect.com/science/article/pii/S0360319925014314?via%3Dihub#appsec1 . Located in the Arabian Gulf, Kuwait is a renewable-abundant country ideal for producing hydrogen via solar energy (green hydrogen). With a global transition away from fossil fuels underway due to their adverse environmental impacts, hydrogen is gaining significant traction as a promising clean energy alternative for the transport sector. Despite this, there are still various challenges associated with implementing a hydrogen supply chain, particularly with regard to the conflicting objectives of minimising cost, environmental impact and risk. This study determines the feasibility of implementing a green hydrogen supply chain in Kuwait based on a multi-objective design, to determine which combination of production (electrolysis type), storage method and transportation method is the most optimal for Kuwait. Three objective functions were considered in this study: the hydrogen supply chain cost, environmental impact, and safety/risk. A mathematical formulation based on mixed integer linear programming (MILP) was used, involving a multi-criteria approach where the three considered objectives must be optimised simultaneously, i.e., cost, global warming potential and safety/risk. The multi-objective optimisation approach via the weighted sum method was applied in this study and solved via GAMS. To account for the ranking of multi-objective criteria, a hybrid AHP-TOPSIS approach was used. Results showed that medium and high demand scenarios better reflect the comparative advantages of each considered method in terms of their multi-objective trade-offs. In particular, it was found that higher hydrogen demand amplifies the impact of higher efficiency and operational savings within several production, storage and transportation methods, and that despite higher initial capital investments, these costs are at some point offset by superior operational efficiency as hydrogen production volumes increase. Conversely, using highly efficient electrolysers or transportation methods at low demand was found to limit their performance. Ministry of Education, Science and Sports of the Republic of Lithuania and Research Council of Lithuania (LMTLT) under the Program ‘University Excellence Initiative’ Project ‘Development of the Bioeconomy Research Center of Excellence’ (BioTEC), agreement No S-A-UEI-23-14.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefBrunel University Research ArchiveArticle . 2025License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2025.03.296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefBrunel University Research ArchiveArticle . 2025License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2025.03.296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Brian Axcell; Hussam Jouhara;Abstract This paper provides a comprehensive description of the thermal conditions within a heat sink with rectangular fins under conditions of cooling by laminar forced convection. The analysis, in which increasing complexity is progressively introduced, uses both classical heat transfer theory and a computational approach to model the increase in air temperature through the channels formed by adjacent fins and the results agree well with published experimental data. The calculations show how key heat transfer parameters vary with axial distance, in particular the rapid changes in heat transfer coefficient and fin efficiency near the leading edges of the cooling fins. Despite these rapid changes and the somewhat ill-defined flow conditions which would exist in practice at the entry to the heat sink, the results clearly show that, compared with the most complex case of a full numerical simulation, accurate predictions of heat sink performance are attainable using analytical methods which incorporate average values of heat transfer coefficient and fin efficiency. The mathematical modelling and solution techniques for each method are described in detail.
Simulation Modelling... arrow_drop_down Simulation Modelling Practice and TheoryArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.simpat.2009.02.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Simulation Modelling... arrow_drop_down Simulation Modelling Practice and TheoryArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.simpat.2009.02.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Sakshum Khanna; Sagar Paneliya; Parth Prajapati; Indrajit Mukhopadhyay; Hussam Jouhara;Supplementary data are available online at https://www.sciencedirect.com/science/article/pii/S0360544222006326?via%3Dihub#appsec1 . In the current work, we demonstrate a simple, versatile, and scalable approach to synthesized silica encapsulated phase-change material (n-hexacosane) loaded between exfoliated-graphite nanosheets (ESPCM) by a chemical process (sol-gel and hydrothermal technique), exhibiting ultra-high thermal stability. The morphological, structural, and chemical properties of synthesized nanocomposite materials were investigated, and the results revealed that the PCM encapsulated within the silica shell was of diameters 120–220 nm and loaded in porous dendritic structures without any chemical reactions in phase change material. Further, the thermophysical properties such as latent heat, thermal conductivity, and stability of synthesized nanocomposites (ESPCM) were investigated by differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). During melting and solidification cycles, a solid-liquid phase transition of ESPCM nanocomposite was observed at 57.9 °C and 48.1 °C with a latent heat of 126.7 J/g and 117.6 J/g respectively. The ESPCM composites exhibited high thermal conductivity (15.74 W/m K) and ultra-high stability against thermal degradation after 300 thermal cycles. Subsequently, COMSOL simulations were carried out to investigate the thermal performance (heat flow with respect to time) of ESPCM, where, on increasing the EG concentration in the nanocomposite, an enhanced heat flow process was observed. CSIR - Council of Scientific & Industrial Research (09/1074(0004/2018 EMR-I); Heat Pipe and Thermal Management Research Group, Brunel University London, UK.
Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2022License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/24423Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2022License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2022License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/24423Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2022License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | DREAM, EC | ETEKINAEC| DREAM ,EC| ETEKINAJouhara, Hussam; Bertrand, Delpech; Axcell, Brian; Montorsi, Luca; Venturelli, Matteo; Almahmoud, Sulaiman; Milani, Massimo; Ahmad, Lujean; Chauhan, Amisha;handle: 11380/1238279
Abstract The ceramics industry is the second largest energy consuming sector in Europe. The main energy used in the ceramics industry is heat generated through burners using natural gas. The main area can be identified in three stages, the drying stage and the firing stage, and the cooling stage. The firing stage represents about 75% of the total energy cost. The roller hearth kiln technology is considered to be the most cost-effective solution for ceramic tile manufacturing. The kiln is separated into two sections, the firing stage and the cooling stage. The cooling stage generates large amounts of waste heat as the exhaust of the kiln is composed of a challenging flue gas for heat recovery. The recovery of this heat in an efficient way with no cross contamination has been achieved with a heat pipe heat exchanger (HPHE) system, which was designed, manufactured and installed on a roller hearth kiln and is presented in this paper. The heat pipe heat exchanger located next to the cooling section exhaust stack managed to recover up to 100 kW at steady state without cross contamination or excess fouling. The return on investment of the system has been evaluated at 16 months with a saving of £30,000 per year. This paper will present a deep row by row theoretical analysis of the heat pipe heat exchanger. The Computational Fluids Dynamics will also be presented to investigate the fluid dynamics within the evaporator and condenser section. Both investigations have then been validated by the experimental investigation carried out on a full-scale industrial system. The design approach used in this paper will highlight the benefits of this type of technology and provide a guideline for the design of novel heat pipe heat exchangers.
IRIS UNIMORE - Archi... arrow_drop_down Brunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research ArchiveBrunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 170visibility views 170 download downloads 246 Powered bymore_vert IRIS UNIMORE - Archi... arrow_drop_down Brunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research ArchiveBrunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Publicly fundedFunded by:Enterprise IrelandEnterprise IrelandAuthors: Anthony J. Robinson; Hussam Jouhara; Garrett O'Donnell; Kevin Kerrigan;Abstract The introduction of low temperature renewable energy sources such as geothermal heat pumps into domestic central heating systems will demand that new technologies be developed to dissipate the required heat loads into homes. The main reason for this is the lower operating temperatures associated with these energy sources, which can be as low as 35 °C and rarely exceed 55 °C. Unless the appropriate heat exchanger is deployed, expensive and intrusive alternatives such as forced air convectors, under floor heating and home insulation retrofitting must be considered. This work details the development of a turn-key heat pipe based naturally aspirated convector for domestic central heating applications. The results show that the heat pipe convector design has a power density of nearly 3 times that of a popular off the shelf panel radiator as well as a finned-serpentine convector. Furthermore, the low water content associated with the heat pipes results in a unit with a much reduced thermal response time which could be advantageous in the context of building thermoregulation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.07.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.07.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Elsevier BV Funded by:EC | DREAM, EC | ETEKINAEC| DREAM ,EC| ETEKINAAuthors: Brough, Daniel; Ramos, João; Delpech, Bertrand; Jouhara, Hussam;Heat pipe heat exchangers (HPHEs) are being more frequently used in energy intensive industries as a method of low-grade waste heat recovery. Prior to the installation of a HPHE, the effect of the heat exchanger within the system requires modelling to simulate the overall impact. From this, potential savings and emission reductions can be determined, and the utilisation of the waste heat can be optimised. One such simulation software is TRNSYS. Currently available heat exchanger simulation components in TRNSYS use averaged values such as a constant effectiveness, constant heat transfer coefficient or conductance for the inputs, which are fixed during the entire simulation. These predictions are useful in a steady-state controlled temperature environment such as a heat treatment facility, but not optimal for the majority of energy recovery applications which operate with fluctuating conditions. A transient TRNSYS HPHE component has been developed using the Effectiveness-Number of Transfer Units (ɛ-NTU) method and validated against experimental results. The model predicts outlet temperatures and energy recovery well within an accuracy of 15% and an average of 4.4% error when compared to existing experimental results, which is acceptable for engineering applications.
Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2020License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/21821Data sources: Bielefeld Academic Search Engine (BASE)International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefBrunel University Research ArchiveArticle . 2020License: CC BYData sources: Brunel University Research ArchiveInternational Journal of ThermofluidsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2020.100056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2020License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/21821Data sources: Bielefeld Academic Search Engine (BASE)International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefBrunel University Research ArchiveArticle . 2020License: CC BYData sources: Brunel University Research ArchiveInternational Journal of ThermofluidsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2020.100056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: T.G. Karayiannis; Hongwei Wu; Savvas A. Tassou; Hussam Jouhara;Food frying is very energy intensive and in industrial potato crisp production lines frying is responsible for more than 90% of the total energy consumption of the process. This paper considers the energy flows in crisp frying using a First Law of Thermodynamics modelling approach which was verified against data from a potato crisp production line. The results indicate that for the frying process considered, most of the energy used is associated with the evaporation of water present in the potato and on the surface of potato slices. The remainder is from evaporation of frying oil and air of the ventilation system and heat losses from the fryer wall surfaces by convection and radiation. The frying oil is heated by an industrial gas furnace and the efficiency of this process was calculated to be 84%. The efficiency of the overall frying process which was found to be of the order of 70% can be improved by employing exhaust heat recovery and optimising other operating and control parameters such as exhaust gas recirculation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.01.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.01.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Mohammad A. Mansour; Nabil Beithou; Ali Othman; A. Qandil; Mohammad Bani Khalid; Gabriel Borowski; Sameh Alsaqoor; Ali Alahmer; Hussam Jouhara;Low-temperature heat sources are widely available in nature, they are considered to be unusable, even though the conversion of such low-grade energy into electricity (high-grade energy) is highly desirable. Thermoelectric generators (TEGs) are achieving increasing interest in converting low temperature heat into electricity. TEG suffers from low performance, improving the performance of TEG will allow there use in huge engineering applications. In this paper the effect of heat transfer rate on the performance of TEGs will be analysed under both steady and transient conditions. Enhancing heat transfer from the TEG surface will be studied using a liquid saturated porous medium. Aluminium and copper particles are used and their influences are compared to forced convection heat transfer from TEG surfaces with and without liquids. The experimental results showed that power generated with Cu particles exceeds that of Al particles with 14%. The free to forced convection power generation ratio was 26.5% for Al,36% for Cu and the enhancement of TEG performance reached 149% for liquid saturated Cu particles.
Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2022License: CC BYFull-Text: http://bura.brunel.ac.uk/handle/2438/25645Data sources: Bielefeld Academic Search Engine (BASE)International Journal of ThermofluidsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefBrunel University Research ArchiveArticle . 2022License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2022.100264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2022License: CC BYFull-Text: http://bura.brunel.ac.uk/handle/2438/25645Data sources: Bielefeld Academic Search Engine (BASE)International Journal of ThermofluidsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefBrunel University Research ArchiveArticle . 2022License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2022.100264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | ETEKINAEC| ETEKINAVenturelli M.; Brough D.; Milani M.; Montorsi L.; Jouhara H.;handle: 11380/1239783
Heat recovery opportunities and total plant energy efficiency improvements need to be evaluated before manufacturing the real components when addressing the energy and economic effectiveness in industrial applications. Numerical modelling of the complete energy systems can be a key design tool in order to investigate the potential solutions to improve the performance of the considered system. In this study, a 0D/1D numerical analysis and transient system simulation analysis are adopted to investigate the energy efficiency enhancement given by the application of a heat pipe-based heat exchanger in the ceramic industry. The thermal power is recovered from the exhaust gases of the kilns used to fire the tiles. The numerical model includes all the main components of the heat recovery system: the primary side of the exhaust gases, the heat exchanger, the secondary circuit of the heat transfer fluid and the heat sink where the thermal power is exploited. Particular care is devoted to the modelling of the heat pipe-based heat exchanger and the necessary control strategy of the system; a specific model for the simulation of the secondary side pump is also accounted for in the analysis. The numerical results of the primary circuit are validated against experimental measurements carried out on the real ceramic facility. The good agreement between the numerical and experimental results demonstrates that the numerical model is an appropriate tool for investigating the energy efficiency enhancement of an industrial plant and for evaluating different configurations and solutions in order to fulfil the industry requirements.
IRIS UNIMORE - Archi... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/26767Data sources: Bielefeld Academic Search Engine (BASE)International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefBrunel University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2021.100080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 82visibility views 82 download downloads 109 Powered bymore_vert IRIS UNIMORE - Archi... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/26767Data sources: Bielefeld Academic Search Engine (BASE)International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefBrunel University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2021.100080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:EC | I-ThERMEC| I-ThERMBianchi, G; Kennedy, S; Zaher, O; Tassou, S; Miller, J; Jouhara, H;Research presented in this paper has received funding from: i) the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 680599, ii) Innovate UK (Project No. 61995-431253, iii) Engineering and Physical Sciences Research Council UK (EPSRC), Grant No. EP/P510294/1; iv) Research Councils UK (RCUK), Grant No. EP/K011820/1. The authors would like to acknowledge the financial support from these organisations as well as contributions from industry partners: Spirax Sarco Engineering PLC, Howden Compressors Ltd, Tata Steel, Artic Circle Ltd, Cooper Tires Ltd, Industrial Power Units Ltd. The authors also acknowledge contributions from Mr. Jonathan Harrison and Mr. Marek Lehocky of Gamma Technologies during the model development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Elsevier BV Authors: Valentina Olabi; Abdulrahman Alhajeri; Hussam Jouhara;Highlights: • A solar-powered green hydrogen supply chain is designed for Kuwait in 2050. • Cost, carbon footprint, and safety are optimised for a hydrogen supply chain. • A hydrogen gas supply chain is generally more favourable than liquid. • Higher demand amplifies efficiency gains and operational savings. • Pipelines and salt caverns emerge as optimal transport and storage choices. Supplementary data are available online at: https://www.sciencedirect.com/science/article/pii/S0360319925014314?via%3Dihub#appsec1 . Located in the Arabian Gulf, Kuwait is a renewable-abundant country ideal for producing hydrogen via solar energy (green hydrogen). With a global transition away from fossil fuels underway due to their adverse environmental impacts, hydrogen is gaining significant traction as a promising clean energy alternative for the transport sector. Despite this, there are still various challenges associated with implementing a hydrogen supply chain, particularly with regard to the conflicting objectives of minimising cost, environmental impact and risk. This study determines the feasibility of implementing a green hydrogen supply chain in Kuwait based on a multi-objective design, to determine which combination of production (electrolysis type), storage method and transportation method is the most optimal for Kuwait. Three objective functions were considered in this study: the hydrogen supply chain cost, environmental impact, and safety/risk. A mathematical formulation based on mixed integer linear programming (MILP) was used, involving a multi-criteria approach where the three considered objectives must be optimised simultaneously, i.e., cost, global warming potential and safety/risk. The multi-objective optimisation approach via the weighted sum method was applied in this study and solved via GAMS. To account for the ranking of multi-objective criteria, a hybrid AHP-TOPSIS approach was used. Results showed that medium and high demand scenarios better reflect the comparative advantages of each considered method in terms of their multi-objective trade-offs. In particular, it was found that higher hydrogen demand amplifies the impact of higher efficiency and operational savings within several production, storage and transportation methods, and that despite higher initial capital investments, these costs are at some point offset by superior operational efficiency as hydrogen production volumes increase. Conversely, using highly efficient electrolysers or transportation methods at low demand was found to limit their performance. Ministry of Education, Science and Sports of the Republic of Lithuania and Research Council of Lithuania (LMTLT) under the Program ‘University Excellence Initiative’ Project ‘Development of the Bioeconomy Research Center of Excellence’ (BioTEC), agreement No S-A-UEI-23-14.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefBrunel University Research ArchiveArticle . 2025License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2025.03.296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefBrunel University Research ArchiveArticle . 2025License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2025.03.296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Brian Axcell; Hussam Jouhara;Abstract This paper provides a comprehensive description of the thermal conditions within a heat sink with rectangular fins under conditions of cooling by laminar forced convection. The analysis, in which increasing complexity is progressively introduced, uses both classical heat transfer theory and a computational approach to model the increase in air temperature through the channels formed by adjacent fins and the results agree well with published experimental data. The calculations show how key heat transfer parameters vary with axial distance, in particular the rapid changes in heat transfer coefficient and fin efficiency near the leading edges of the cooling fins. Despite these rapid changes and the somewhat ill-defined flow conditions which would exist in practice at the entry to the heat sink, the results clearly show that, compared with the most complex case of a full numerical simulation, accurate predictions of heat sink performance are attainable using analytical methods which incorporate average values of heat transfer coefficient and fin efficiency. The mathematical modelling and solution techniques for each method are described in detail.
Simulation Modelling... arrow_drop_down Simulation Modelling Practice and TheoryArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.simpat.2009.02.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Simulation Modelling... arrow_drop_down Simulation Modelling Practice and TheoryArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.simpat.2009.02.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Sakshum Khanna; Sagar Paneliya; Parth Prajapati; Indrajit Mukhopadhyay; Hussam Jouhara;Supplementary data are available online at https://www.sciencedirect.com/science/article/pii/S0360544222006326?via%3Dihub#appsec1 . In the current work, we demonstrate a simple, versatile, and scalable approach to synthesized silica encapsulated phase-change material (n-hexacosane) loaded between exfoliated-graphite nanosheets (ESPCM) by a chemical process (sol-gel and hydrothermal technique), exhibiting ultra-high thermal stability. The morphological, structural, and chemical properties of synthesized nanocomposite materials were investigated, and the results revealed that the PCM encapsulated within the silica shell was of diameters 120–220 nm and loaded in porous dendritic structures without any chemical reactions in phase change material. Further, the thermophysical properties such as latent heat, thermal conductivity, and stability of synthesized nanocomposites (ESPCM) were investigated by differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). During melting and solidification cycles, a solid-liquid phase transition of ESPCM nanocomposite was observed at 57.9 °C and 48.1 °C with a latent heat of 126.7 J/g and 117.6 J/g respectively. The ESPCM composites exhibited high thermal conductivity (15.74 W/m K) and ultra-high stability against thermal degradation after 300 thermal cycles. Subsequently, COMSOL simulations were carried out to investigate the thermal performance (heat flow with respect to time) of ESPCM, where, on increasing the EG concentration in the nanocomposite, an enhanced heat flow process was observed. CSIR - Council of Scientific & Industrial Research (09/1074(0004/2018 EMR-I); Heat Pipe and Thermal Management Research Group, Brunel University London, UK.
Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2022License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/24423Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2022License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2022License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/24423Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2022License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | DREAM, EC | ETEKINAEC| DREAM ,EC| ETEKINAJouhara, Hussam; Bertrand, Delpech; Axcell, Brian; Montorsi, Luca; Venturelli, Matteo; Almahmoud, Sulaiman; Milani, Massimo; Ahmad, Lujean; Chauhan, Amisha;handle: 11380/1238279
Abstract The ceramics industry is the second largest energy consuming sector in Europe. The main energy used in the ceramics industry is heat generated through burners using natural gas. The main area can be identified in three stages, the drying stage and the firing stage, and the cooling stage. The firing stage represents about 75% of the total energy cost. The roller hearth kiln technology is considered to be the most cost-effective solution for ceramic tile manufacturing. The kiln is separated into two sections, the firing stage and the cooling stage. The cooling stage generates large amounts of waste heat as the exhaust of the kiln is composed of a challenging flue gas for heat recovery. The recovery of this heat in an efficient way with no cross contamination has been achieved with a heat pipe heat exchanger (HPHE) system, which was designed, manufactured and installed on a roller hearth kiln and is presented in this paper. The heat pipe heat exchanger located next to the cooling section exhaust stack managed to recover up to 100 kW at steady state without cross contamination or excess fouling. The return on investment of the system has been evaluated at 16 months with a saving of £30,000 per year. This paper will present a deep row by row theoretical analysis of the heat pipe heat exchanger. The Computational Fluids Dynamics will also be presented to investigate the fluid dynamics within the evaporator and condenser section. Both investigations have then been validated by the experimental investigation carried out on a full-scale industrial system. The design approach used in this paper will highlight the benefits of this type of technology and provide a guideline for the design of novel heat pipe heat exchangers.
IRIS UNIMORE - Archi... arrow_drop_down Brunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research ArchiveBrunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 170visibility views 170 download downloads 246 Powered bymore_vert IRIS UNIMORE - Archi... arrow_drop_down Brunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research ArchiveBrunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Publicly fundedFunded by:Enterprise IrelandEnterprise IrelandAuthors: Anthony J. Robinson; Hussam Jouhara; Garrett O'Donnell; Kevin Kerrigan;Abstract The introduction of low temperature renewable energy sources such as geothermal heat pumps into domestic central heating systems will demand that new technologies be developed to dissipate the required heat loads into homes. The main reason for this is the lower operating temperatures associated with these energy sources, which can be as low as 35 °C and rarely exceed 55 °C. Unless the appropriate heat exchanger is deployed, expensive and intrusive alternatives such as forced air convectors, under floor heating and home insulation retrofitting must be considered. This work details the development of a turn-key heat pipe based naturally aspirated convector for domestic central heating applications. The results show that the heat pipe convector design has a power density of nearly 3 times that of a popular off the shelf panel radiator as well as a finned-serpentine convector. Furthermore, the low water content associated with the heat pipes results in a unit with a much reduced thermal response time which could be advantageous in the context of building thermoregulation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.07.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.07.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Elsevier BV Funded by:EC | DREAM, EC | ETEKINAEC| DREAM ,EC| ETEKINAAuthors: Brough, Daniel; Ramos, João; Delpech, Bertrand; Jouhara, Hussam;Heat pipe heat exchangers (HPHEs) are being more frequently used in energy intensive industries as a method of low-grade waste heat recovery. Prior to the installation of a HPHE, the effect of the heat exchanger within the system requires modelling to simulate the overall impact. From this, potential savings and emission reductions can be determined, and the utilisation of the waste heat can be optimised. One such simulation software is TRNSYS. Currently available heat exchanger simulation components in TRNSYS use averaged values such as a constant effectiveness, constant heat transfer coefficient or conductance for the inputs, which are fixed during the entire simulation. These predictions are useful in a steady-state controlled temperature environment such as a heat treatment facility, but not optimal for the majority of energy recovery applications which operate with fluctuating conditions. A transient TRNSYS HPHE component has been developed using the Effectiveness-Number of Transfer Units (ɛ-NTU) method and validated against experimental results. The model predicts outlet temperatures and energy recovery well within an accuracy of 15% and an average of 4.4% error when compared to existing experimental results, which is acceptable for engineering applications.
Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2020License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/21821Data sources: Bielefeld Academic Search Engine (BASE)International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefBrunel University Research ArchiveArticle . 2020License: CC BYData sources: Brunel University Research ArchiveInternational Journal of ThermofluidsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2020.100056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2020License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/21821Data sources: Bielefeld Academic Search Engine (BASE)International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefBrunel University Research ArchiveArticle . 2020License: CC BYData sources: Brunel University Research ArchiveInternational Journal of ThermofluidsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2020.100056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: T.G. Karayiannis; Hongwei Wu; Savvas A. Tassou; Hussam Jouhara;Food frying is very energy intensive and in industrial potato crisp production lines frying is responsible for more than 90% of the total energy consumption of the process. This paper considers the energy flows in crisp frying using a First Law of Thermodynamics modelling approach which was verified against data from a potato crisp production line. The results indicate that for the frying process considered, most of the energy used is associated with the evaporation of water present in the potato and on the surface of potato slices. The remainder is from evaporation of frying oil and air of the ventilation system and heat losses from the fryer wall surfaces by convection and radiation. The frying oil is heated by an industrial gas furnace and the efficiency of this process was calculated to be 84%. The efficiency of the overall frying process which was found to be of the order of 70% can be improved by employing exhaust heat recovery and optimising other operating and control parameters such as exhaust gas recirculation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.01.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.01.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Mohammad A. Mansour; Nabil Beithou; Ali Othman; A. Qandil; Mohammad Bani Khalid; Gabriel Borowski; Sameh Alsaqoor; Ali Alahmer; Hussam Jouhara;Low-temperature heat sources are widely available in nature, they are considered to be unusable, even though the conversion of such low-grade energy into electricity (high-grade energy) is highly desirable. Thermoelectric generators (TEGs) are achieving increasing interest in converting low temperature heat into electricity. TEG suffers from low performance, improving the performance of TEG will allow there use in huge engineering applications. In this paper the effect of heat transfer rate on the performance of TEGs will be analysed under both steady and transient conditions. Enhancing heat transfer from the TEG surface will be studied using a liquid saturated porous medium. Aluminium and copper particles are used and their influences are compared to forced convection heat transfer from TEG surfaces with and without liquids. The experimental results showed that power generated with Cu particles exceeds that of Al particles with 14%. The free to forced convection power generation ratio was 26.5% for Al,36% for Cu and the enhancement of TEG performance reached 149% for liquid saturated Cu particles.
Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2022License: CC BYFull-Text: http://bura.brunel.ac.uk/handle/2438/25645Data sources: Bielefeld Academic Search Engine (BASE)International Journal of ThermofluidsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefBrunel University Research ArchiveArticle . 2022License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2022.100264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2022License: CC BYFull-Text: http://bura.brunel.ac.uk/handle/2438/25645Data sources: Bielefeld Academic Search Engine (BASE)International Journal of ThermofluidsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefBrunel University Research ArchiveArticle . 2022License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2022.100264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | ETEKINAEC| ETEKINAVenturelli M.; Brough D.; Milani M.; Montorsi L.; Jouhara H.;handle: 11380/1239783
Heat recovery opportunities and total plant energy efficiency improvements need to be evaluated before manufacturing the real components when addressing the energy and economic effectiveness in industrial applications. Numerical modelling of the complete energy systems can be a key design tool in order to investigate the potential solutions to improve the performance of the considered system. In this study, a 0D/1D numerical analysis and transient system simulation analysis are adopted to investigate the energy efficiency enhancement given by the application of a heat pipe-based heat exchanger in the ceramic industry. The thermal power is recovered from the exhaust gases of the kilns used to fire the tiles. The numerical model includes all the main components of the heat recovery system: the primary side of the exhaust gases, the heat exchanger, the secondary circuit of the heat transfer fluid and the heat sink where the thermal power is exploited. Particular care is devoted to the modelling of the heat pipe-based heat exchanger and the necessary control strategy of the system; a specific model for the simulation of the secondary side pump is also accounted for in the analysis. The numerical results of the primary circuit are validated against experimental measurements carried out on the real ceramic facility. The good agreement between the numerical and experimental results demonstrates that the numerical model is an appropriate tool for investigating the energy efficiency enhancement of an industrial plant and for evaluating different configurations and solutions in order to fulfil the industry requirements.
IRIS UNIMORE - Archi... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/26767Data sources: Bielefeld Academic Search Engine (BASE)International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefBrunel University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2021.100080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 82visibility views 82 download downloads 109 Powered bymore_vert IRIS UNIMORE - Archi... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/26767Data sources: Bielefeld Academic Search Engine (BASE)International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefBrunel University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2021.100080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu