- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Aleksander Krótki; Joanna Bigda; Tomasz Spietz; Karina Ignasiak; Piotr Matusiak; Daniel Kowol;doi: 10.3390/en18081887
Hydrogen (H2) is a key energy carrier and industrial feedstock, with growing interest in its production from syngas and water–gas shift (WGS) syngas. Effective purification methods are essential to ensure high hydrogen purity for various applications, particularly fuel cells, chemical synthesis, or automotive fuel. Pressure swing adsorption (PSA) has emerged as a dominant separation technology due to its efficiency, scalability, and industrial maturity. This study reviews PSA-based hydrogen purification and proposes an experimental framework based on literature insights. Key process variables influencing PSA performance, such as adsorbent selection, cycle sequences, pressure conditions, and flow configurations, are identified. The proposed experimental methodology includes breakthrough adsorption studies and PSA process evaluations under dynamic conditions, with variations in column configuration, adsorption pressure (8–9 bar), and process concept (Berlin and Linde Gas). The purpose of the review is to prepare for syngas separation by the selected process in terms of hydrogen recovery and purity using ITPE’s advanced technological facilities. The findings are expected to contribute to improving PSA-based hydrogen purification strategies, offering a pathway for enhanced industrial-scale hydrogen production. This work provides a foundation for bridging theoretical PSA principles with practical implementation, supporting the growing demand for clean hydrogen in sustainable energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18081887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18081887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Andrzej Wilk; Dariusz Śpiewak; Adam Tatarczuk; Marcin Stec; Aleksander Krótki; Tomasz Spietz; Lucyna Więcław-Solny;As a part of the strategic research program “Advanced technologies for energy generation: Development of a technology for highly efficient zero-emission coal-fired power units integrated with CO2 capture”, a mobile CO2 absorption pilot plant was erected. The main purpose of the pilot plant was to demonstrate the post-combustion technology in conjunction with a coal-fired power plant. The pilot plant captured CO2 by chemical absorption in amine-based solvents, which was considered to be the best adapted technology to the requirements of coal-fired power plants and suitable for retrofitting to existing units. The pilot plant captured up to 1000 kg/day of CO2 from the power plant’s flue gases with CO2 recovery exceeding 90 %. The flexible process flowsheet of the pilot plant offered high potential for the validation of various improvements, which were designed to reduce the process energy demand and to increase the CO2 recovery. This paper summarizes the initial operation experience at the TAURON Łaziska Power Plant in Poland. Selected first results obtained are presented and discussed. The initial campaigns utilized 20 and 30 wt% monoethanolamine (MEA) solutions recognized as baseline solvents that were suitable for comparative purposes. The initial campaigns at the pilot plant successfully demonstrated reliable operation and promising results.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-015-1001-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 75 citations 75 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-015-1001-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Andrzej Wilk; Tadeusz Chwoła; Aleksander Krótki; Szymon Dobras; Lucyna Więcław-Solny; Tomasz Spietz;Abstract The use of amine scrubbing methods for reducing CO2 emission from burning fossil fuels is growing in popularity. A major challenge of carbon capture methods using amines is high energy consumption. Moreover, the emission of amines from the carbon capture plant gains increasing attention due to environmental concerns. The amines may evaporate from the solution or be released in the form of an aerosol and enter the atmosphere. In order to determine the amines emission, experimental research was conducted using a process development unit. The composition of the gases from the absorber and desorber were measured using a Fourier Transform Infrared (FTIR) gas analyser. A solvent blend of 2-amino-2-methyl-1-propanol (AMP) and piperazine was utilised. Synthetic flue gas containing 12.7–12.9 % vol. (dry basis) of CO2 was directed to the absorber with a flow rate of 100 m3/h. Fresh water was supplied to the top of the absorber to maintain the water balance. No other form of water wash was used. The major components that were emitted together with the treated gas were ammonia and AMP. The produced CO2 contained traces of amine, ammonia and formic acid. The concentration of other degradation products was below the limit of quantification. Increasing the lean solvent temperature by 15 °C resulted in an increase in AMP emission by over 50 ppm. By analysing the vapour pressure literature data with obtained results, the emission was considered mainly as vapour-based. Water dosing at the top of the absorber proved to be effective in reducing amine emissions.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Adam Tatarczuk; Marcin Stec; Aleksander Krótki; Lucyna Więcław-Solny;AbstractInstitute for Chemical Processing of Coal in cooperation with industrial partners: TAURON Polska Energia S.A. and TAURON Wytwarzanie S.A. designed, constructed and operated pilot plant at Łaziska Power Plant in Łaziska Górne, Poland.The carbon capture facility is based on amine post-combustion process technology and used 30 wt% aqueous ethanolamine solvent. Approximately 1000 kilograms of CO2 can be captured per day from flue gas stream of 200 m3/h of a 225MWe hard coal fired boiler. The plant captured its first tonne of CO2 in August 2013. The purpose of this study is to present initial results from tests carried out at Łaziska Power Plant using different process flow sheets: heat-integrated stripping column and split flow process.The tests provide valuable experimental evidence for modifications described in the literature, mainly through modelling and demonstrate that flow sheet modifications, despite the increase in plant complexity, are worth to consider.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.664&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.664&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Adam Tatarczuk; Tomasz Spietz; Lucyna Więcław-Solny; Aleksander Krótki; Tadeusz Chwoła; Szymon Dobras; Janusz Zdeb; Marek Tańczyk;doi: 10.3390/en18092236
Since fossil fuels still dominate industry and electricity production, post-combustion carbon capture remains essential for decarbonizing these sectors. The most advanced technique for widespread application, particularly in hard-to-abate industries, is amine-based absorption. However, increasing energy efficiency is crucial for broader implementation. This study presents pilot-scale results from the Tauron Power Plant in Poland using a mobile CO2 capture unit (1 TPD). Two innovative process modifications—Split Flow (SF) and Heat Integrated Stripper (HIS)—were experimentally investigated; they achieved a 10% reduction in reboiler heat duty, reaching 2.82 MJ/kgCO2, along with a 36% decrease in overall heat losses and up to a 28% reduction in cross-flow heat exchanger duty. The analysis highlights both the advantages and challenges of these modifications. SF is easier to retrofit into existing plants, whereas the HIS requires more extensive modifications in the stripper section, thus making HIS more cost-effective for new installations. Moreover, as heat consumption constitutes the primary operational cost, even a moderate reduction in heat duty can lead to significant economic benefits. The HIS also offers substantial potential for thermal integration in industries with available waste heat streams. The pilot data underwent validation procedures to ensure reliability, which provides a robust foundation for process modeling, optimization, and scaling for industrial applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Tadeusz Chwoła; Lucyna Więcław Solny; Aleksander Krótki; Tomasz Spietz; Krzysztof Jastrząb; Marcin Stec; Andrzej Wilk;Abstract This paper provides a discussion of the experimental results obtained at the amine-based carbon capture pilot plant having the capacity of 200 m3n/h of flue gas, using 30 wt% ethanolamine solution as a solvent. The objective was to prove the superiority of application of advanced amine flow systems as well as of the novel stripper internal heater fulfilling pilot Technology Readiness Level. Standard process flow sheet, multi absorber feed and split-flow process modifications with and without stripper interheating were examined. A vast number of process parameters were recorded during the trials. The data were critically analysed, compared and presented in the paper. Demonstrated process flow modifications resulted in a reduction of the reboiler heat duty by about 5%, while using internal stripper interheatingby 9÷11 %, comparing to standard amine-based carbon capture plant.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Tomasz Spietz; Marcin Stec; Andrzej Wilk; Aleksander Krótki; Adam Tatarczuk; Lucyna Więcław‐Solny;doi: 10.1002/apj.2248
AbstractIn this study, the densities of carbonated aqueous solution of amines (ethanolamine, methylethanolamine, aminoethylethanolamine, and N‐methyldiethanolamine with piperazine) in various concentration and CO2 loadings were measured with temperatures ranging from 20°C to 60°C. The measured densities are in good agreement with those reported in the literature. The density experimental data were correlated with temperature and CO2 loading. Additionally, in case of the monoethanolamine, amine concentration was included into the correlation. Furthermore, an obtained correlation for density prediction of carbonated monoethanoloamine solutions was compared with Jouyban–Acree model. The fitted models are able to predict the density of carbonated amine solutions with a satisfactory precision. Presented correlations can be used either to predict the density of carbonated amine solutions or to determine CO2 loading of the investigated solution, if the density is known. The results of this paper may have an industrial application as a tool for process control of CO2 capture systems.
Asia-Pacific Journal... arrow_drop_down Asia-Pacific Journal of Chemical EngineeringArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/apj.2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Asia-Pacific Journal... arrow_drop_down Asia-Pacific Journal of Chemical EngineeringArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/apj.2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Tadeusz Chwoła; Tomasz Spietz; Lucyna Więcław-Solny; Adam Tatarczuk; Aleksander Krótki; Szymon Dobras; Andrzej Wilk; Janusz Tchórz; Marcin Stec; Janusz Zdeb;Abstract This article presents preliminary results of the methanation process using CO2 from amine scrubbing. The studies were carried out at the CO2-SNG pilot plant. The installation was built by TAURON Wytwarzanie S.A. at the Łaziska Power Plant in Poland. After the commissioning, the Institute for Chemical Processing of Coal (IChPW) was responsible for conducting research. Synthetic methane (SNG) is produced by the reaction of CO2 captured from flue gas (using amine absorption) with H2 obtained from water electrolysis. The methanation reaction takes place in a two-stage catalytic reactor. After the compression the SNG could be used as a fuel for internal combustion engines (CNG). This paper describes in detail the construction of the pilot plant as well as the guidelines for the methanation process. Furthermore, the impact of process gas flow, reactor temperature and system pressure on the conversion of CO2 to methane is presented. The tests were carried out at process gas flows in the range of 9.9–23.0 m3N/h, at pressures of 1.5–3.0 bara and temperatures of 280–350 °C. The maximum obtained CO2 conversion was 98%. The produced SNG consisted of about 82% of methane, 13% of hydrogen and 5% of CO2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.116804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.116804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Aleksander Krótki; Adam Tatarczuk; Marcin Stec; Stanisław Tokarski; Lucyna Więcław-Solny; Marek Ściążko;Abstract The purpose of this study is to present the testing of a 30 wt% solution of ethanolamine (MEA) in an advanced CO 2 capture pilot plant. The mobile pilot plant, designed, constructed and operated by the Institute for Chemical Processing of Coal (IChPW) in cooperation with industrial partners: TAURON Polska Energia and TAURON Wytwarzanie, was used to carry out trials at the Jaworzno II Power Plant in Poland. Thanks to flexible technological design, numerous process flows sheet modifications were tested. The use of split flow or inter-stage absorber cooling is demonstrated and compared to the standard amine process. Presented modifications resulted in an increase of CO 2 recovery ranging from 3% to 8%, whilst reducing the reboiler heat duty by about 5%. The correlation of CO 2 recovery, reboiler heat duty and process parameters (solvent loading, L/G ratio) has been established for numerous process flow sheet modifications. The tests provide valuable experimental evidence for modifications described in the literature, mainly through modelling and demonstrate that flow sheet modifications, despite the increase in plant complexity, are worth considering.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Aleksander Krótki; Tomasz Spietz; Szymon Dobras; Tadeusz Chwoła; Adam Tatarczuk; Damian Żórawski; Kazimierz Skowron; Dawid Skrzyniecki; Patryk Hulisz;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Aleksander Krótki; Joanna Bigda; Tomasz Spietz; Karina Ignasiak; Piotr Matusiak; Daniel Kowol;doi: 10.3390/en18081887
Hydrogen (H2) is a key energy carrier and industrial feedstock, with growing interest in its production from syngas and water–gas shift (WGS) syngas. Effective purification methods are essential to ensure high hydrogen purity for various applications, particularly fuel cells, chemical synthesis, or automotive fuel. Pressure swing adsorption (PSA) has emerged as a dominant separation technology due to its efficiency, scalability, and industrial maturity. This study reviews PSA-based hydrogen purification and proposes an experimental framework based on literature insights. Key process variables influencing PSA performance, such as adsorbent selection, cycle sequences, pressure conditions, and flow configurations, are identified. The proposed experimental methodology includes breakthrough adsorption studies and PSA process evaluations under dynamic conditions, with variations in column configuration, adsorption pressure (8–9 bar), and process concept (Berlin and Linde Gas). The purpose of the review is to prepare for syngas separation by the selected process in terms of hydrogen recovery and purity using ITPE’s advanced technological facilities. The findings are expected to contribute to improving PSA-based hydrogen purification strategies, offering a pathway for enhanced industrial-scale hydrogen production. This work provides a foundation for bridging theoretical PSA principles with practical implementation, supporting the growing demand for clean hydrogen in sustainable energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18081887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18081887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Andrzej Wilk; Dariusz Śpiewak; Adam Tatarczuk; Marcin Stec; Aleksander Krótki; Tomasz Spietz; Lucyna Więcław-Solny;As a part of the strategic research program “Advanced technologies for energy generation: Development of a technology for highly efficient zero-emission coal-fired power units integrated with CO2 capture”, a mobile CO2 absorption pilot plant was erected. The main purpose of the pilot plant was to demonstrate the post-combustion technology in conjunction with a coal-fired power plant. The pilot plant captured CO2 by chemical absorption in amine-based solvents, which was considered to be the best adapted technology to the requirements of coal-fired power plants and suitable for retrofitting to existing units. The pilot plant captured up to 1000 kg/day of CO2 from the power plant’s flue gases with CO2 recovery exceeding 90 %. The flexible process flowsheet of the pilot plant offered high potential for the validation of various improvements, which were designed to reduce the process energy demand and to increase the CO2 recovery. This paper summarizes the initial operation experience at the TAURON Łaziska Power Plant in Poland. Selected first results obtained are presented and discussed. The initial campaigns utilized 20 and 30 wt% monoethanolamine (MEA) solutions recognized as baseline solvents that were suitable for comparative purposes. The initial campaigns at the pilot plant successfully demonstrated reliable operation and promising results.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-015-1001-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 75 citations 75 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-015-1001-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Andrzej Wilk; Tadeusz Chwoła; Aleksander Krótki; Szymon Dobras; Lucyna Więcław-Solny; Tomasz Spietz;Abstract The use of amine scrubbing methods for reducing CO2 emission from burning fossil fuels is growing in popularity. A major challenge of carbon capture methods using amines is high energy consumption. Moreover, the emission of amines from the carbon capture plant gains increasing attention due to environmental concerns. The amines may evaporate from the solution or be released in the form of an aerosol and enter the atmosphere. In order to determine the amines emission, experimental research was conducted using a process development unit. The composition of the gases from the absorber and desorber were measured using a Fourier Transform Infrared (FTIR) gas analyser. A solvent blend of 2-amino-2-methyl-1-propanol (AMP) and piperazine was utilised. Synthetic flue gas containing 12.7–12.9 % vol. (dry basis) of CO2 was directed to the absorber with a flow rate of 100 m3/h. Fresh water was supplied to the top of the absorber to maintain the water balance. No other form of water wash was used. The major components that were emitted together with the treated gas were ammonia and AMP. The produced CO2 contained traces of amine, ammonia and formic acid. The concentration of other degradation products was below the limit of quantification. Increasing the lean solvent temperature by 15 °C resulted in an increase in AMP emission by over 50 ppm. By analysing the vapour pressure literature data with obtained results, the emission was considered mainly as vapour-based. Water dosing at the top of the absorber proved to be effective in reducing amine emissions.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Adam Tatarczuk; Marcin Stec; Aleksander Krótki; Lucyna Więcław-Solny;AbstractInstitute for Chemical Processing of Coal in cooperation with industrial partners: TAURON Polska Energia S.A. and TAURON Wytwarzanie S.A. designed, constructed and operated pilot plant at Łaziska Power Plant in Łaziska Górne, Poland.The carbon capture facility is based on amine post-combustion process technology and used 30 wt% aqueous ethanolamine solvent. Approximately 1000 kilograms of CO2 can be captured per day from flue gas stream of 200 m3/h of a 225MWe hard coal fired boiler. The plant captured its first tonne of CO2 in August 2013. The purpose of this study is to present initial results from tests carried out at Łaziska Power Plant using different process flow sheets: heat-integrated stripping column and split flow process.The tests provide valuable experimental evidence for modifications described in the literature, mainly through modelling and demonstrate that flow sheet modifications, despite the increase in plant complexity, are worth to consider.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.664&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.664&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Adam Tatarczuk; Tomasz Spietz; Lucyna Więcław-Solny; Aleksander Krótki; Tadeusz Chwoła; Szymon Dobras; Janusz Zdeb; Marek Tańczyk;doi: 10.3390/en18092236
Since fossil fuels still dominate industry and electricity production, post-combustion carbon capture remains essential for decarbonizing these sectors. The most advanced technique for widespread application, particularly in hard-to-abate industries, is amine-based absorption. However, increasing energy efficiency is crucial for broader implementation. This study presents pilot-scale results from the Tauron Power Plant in Poland using a mobile CO2 capture unit (1 TPD). Two innovative process modifications—Split Flow (SF) and Heat Integrated Stripper (HIS)—were experimentally investigated; they achieved a 10% reduction in reboiler heat duty, reaching 2.82 MJ/kgCO2, along with a 36% decrease in overall heat losses and up to a 28% reduction in cross-flow heat exchanger duty. The analysis highlights both the advantages and challenges of these modifications. SF is easier to retrofit into existing plants, whereas the HIS requires more extensive modifications in the stripper section, thus making HIS more cost-effective for new installations. Moreover, as heat consumption constitutes the primary operational cost, even a moderate reduction in heat duty can lead to significant economic benefits. The HIS also offers substantial potential for thermal integration in industries with available waste heat streams. The pilot data underwent validation procedures to ensure reliability, which provides a robust foundation for process modeling, optimization, and scaling for industrial applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Tadeusz Chwoła; Lucyna Więcław Solny; Aleksander Krótki; Tomasz Spietz; Krzysztof Jastrząb; Marcin Stec; Andrzej Wilk;Abstract This paper provides a discussion of the experimental results obtained at the amine-based carbon capture pilot plant having the capacity of 200 m3n/h of flue gas, using 30 wt% ethanolamine solution as a solvent. The objective was to prove the superiority of application of advanced amine flow systems as well as of the novel stripper internal heater fulfilling pilot Technology Readiness Level. Standard process flow sheet, multi absorber feed and split-flow process modifications with and without stripper interheating were examined. A vast number of process parameters were recorded during the trials. The data were critically analysed, compared and presented in the paper. Demonstrated process flow modifications resulted in a reduction of the reboiler heat duty by about 5%, while using internal stripper interheatingby 9÷11 %, comparing to standard amine-based carbon capture plant.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Tomasz Spietz; Marcin Stec; Andrzej Wilk; Aleksander Krótki; Adam Tatarczuk; Lucyna Więcław‐Solny;doi: 10.1002/apj.2248
AbstractIn this study, the densities of carbonated aqueous solution of amines (ethanolamine, methylethanolamine, aminoethylethanolamine, and N‐methyldiethanolamine with piperazine) in various concentration and CO2 loadings were measured with temperatures ranging from 20°C to 60°C. The measured densities are in good agreement with those reported in the literature. The density experimental data were correlated with temperature and CO2 loading. Additionally, in case of the monoethanolamine, amine concentration was included into the correlation. Furthermore, an obtained correlation for density prediction of carbonated monoethanoloamine solutions was compared with Jouyban–Acree model. The fitted models are able to predict the density of carbonated amine solutions with a satisfactory precision. Presented correlations can be used either to predict the density of carbonated amine solutions or to determine CO2 loading of the investigated solution, if the density is known. The results of this paper may have an industrial application as a tool for process control of CO2 capture systems.
Asia-Pacific Journal... arrow_drop_down Asia-Pacific Journal of Chemical EngineeringArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/apj.2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Asia-Pacific Journal... arrow_drop_down Asia-Pacific Journal of Chemical EngineeringArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/apj.2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Tadeusz Chwoła; Tomasz Spietz; Lucyna Więcław-Solny; Adam Tatarczuk; Aleksander Krótki; Szymon Dobras; Andrzej Wilk; Janusz Tchórz; Marcin Stec; Janusz Zdeb;Abstract This article presents preliminary results of the methanation process using CO2 from amine scrubbing. The studies were carried out at the CO2-SNG pilot plant. The installation was built by TAURON Wytwarzanie S.A. at the Łaziska Power Plant in Poland. After the commissioning, the Institute for Chemical Processing of Coal (IChPW) was responsible for conducting research. Synthetic methane (SNG) is produced by the reaction of CO2 captured from flue gas (using amine absorption) with H2 obtained from water electrolysis. The methanation reaction takes place in a two-stage catalytic reactor. After the compression the SNG could be used as a fuel for internal combustion engines (CNG). This paper describes in detail the construction of the pilot plant as well as the guidelines for the methanation process. Furthermore, the impact of process gas flow, reactor temperature and system pressure on the conversion of CO2 to methane is presented. The tests were carried out at process gas flows in the range of 9.9–23.0 m3N/h, at pressures of 1.5–3.0 bara and temperatures of 280–350 °C. The maximum obtained CO2 conversion was 98%. The produced SNG consisted of about 82% of methane, 13% of hydrogen and 5% of CO2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.116804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.116804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Aleksander Krótki; Adam Tatarczuk; Marcin Stec; Stanisław Tokarski; Lucyna Więcław-Solny; Marek Ściążko;Abstract The purpose of this study is to present the testing of a 30 wt% solution of ethanolamine (MEA) in an advanced CO 2 capture pilot plant. The mobile pilot plant, designed, constructed and operated by the Institute for Chemical Processing of Coal (IChPW) in cooperation with industrial partners: TAURON Polska Energia and TAURON Wytwarzanie, was used to carry out trials at the Jaworzno II Power Plant in Poland. Thanks to flexible technological design, numerous process flows sheet modifications were tested. The use of split flow or inter-stage absorber cooling is demonstrated and compared to the standard amine process. Presented modifications resulted in an increase of CO 2 recovery ranging from 3% to 8%, whilst reducing the reboiler heat duty by about 5%. The correlation of CO 2 recovery, reboiler heat duty and process parameters (solvent loading, L/G ratio) has been established for numerous process flow sheet modifications. The tests provide valuable experimental evidence for modifications described in the literature, mainly through modelling and demonstrate that flow sheet modifications, despite the increase in plant complexity, are worth considering.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Aleksander Krótki; Tomasz Spietz; Szymon Dobras; Tadeusz Chwoła; Adam Tatarczuk; Damian Żórawski; Kazimierz Skowron; Dawid Skrzyniecki; Patryk Hulisz;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu