- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG David Torres; Emilio Trigueros; Pedro Robles; Williams H. Leiva; Ricardo I. Jeldres; Pedro G. Toledo; Norman Toro;doi: 10.3390/met10111426
Chalcocite (Cu2S) has the fastest kinetics of dissolution of Cu in chlorinated media of all copper sulfide minerals. Chalcocite has been identified as having economic interest due to its abundance, although the water necessary for its dissolution is scarce in many regions. In this work, the replacement of fresh water by sea water or by reject brine with high chloride content from desalination plants is analyzed. Additionally, the effect of adding MnO2 from available manganese nodules in vast quantities at the bottom of the sea is studied. Reject brine shows better results than sea water, and the addition of MnO2 to the brine significantly increases the kinetics of chalcocite dissolution in a short time. H2SO4 concentration is found to be irrelevant when working at high concentrations of chloride and MnO2. The best results, 71% Cu extractions in 48 h, are obtained for reject brine, 100 mg of MnO2 per 200 g of mineral and H2SO4 0.5 mol/L. The results are expected to contribute to a sustainable process of dissolution of chalcocite by using the reject brine from desalination plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/met10111426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/met10111426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG David Torres; Emilio Trigueros; Pedro Robles; Williams H. Leiva; Ricardo I. Jeldres; Pedro G. Toledo; Norman Toro;doi: 10.3390/met10111426
Chalcocite (Cu2S) has the fastest kinetics of dissolution of Cu in chlorinated media of all copper sulfide minerals. Chalcocite has been identified as having economic interest due to its abundance, although the water necessary for its dissolution is scarce in many regions. In this work, the replacement of fresh water by sea water or by reject brine with high chloride content from desalination plants is analyzed. Additionally, the effect of adding MnO2 from available manganese nodules in vast quantities at the bottom of the sea is studied. Reject brine shows better results than sea water, and the addition of MnO2 to the brine significantly increases the kinetics of chalcocite dissolution in a short time. H2SO4 concentration is found to be irrelevant when working at high concentrations of chloride and MnO2. The best results, 71% Cu extractions in 48 h, are obtained for reject brine, 100 mg of MnO2 per 200 g of mineral and H2SO4 0.5 mol/L. The results are expected to contribute to a sustainable process of dissolution of chalcocite by using the reject brine from desalination plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/met10111426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/met10111426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu