- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
Country
Source
- Energy Research
- Energy Research
Research data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Breidenbach, Andreas; Schleuß, Per-Marten; Liu, Shibin; Schneider, Dominik; de la Haye, Tilman; Dippold, Michaela Anna; Miehe, Georg; Heitkamp, Felix; Seeber, Elke; Mason-Jones, Kyle; Xu, Xingliang; Huanming, Yang; Xu, Jianchu; Dorji, Tsechoe; Gube, Matthias; Norf, Helge; Meier, Jutta; Guggenberger, Georg; Kuzyakov, Yakov; Spielvogel, Sandra;PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.918236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.918236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Springer Science and Business Media LLC Authors: Ludwig Haumaier; Georg Guggenberger; Bruno Glaser; Wolfgang Zech;pmid: 11302125
Many soils of the lowland humid tropics are thought to be too infertile to support sustainable agriculture. However, there is strong evidence that permanent or semi-permanent agriculture can itself create sustainably fertile soils known as 'Terra Preta' soils. These soils not only contain higher concentrations of nutrients such as nitrogen, phosphorus, potassium and calcium, but also greater amounts of stable soil organic matter. Frequent findings of charcoal and highly aromatic humic substances suggest that residues of incomplete combustion of organic material (black carbon) are a key factor in the persistence of soil organic matter in these soils. Our investigations showed that 'Terra Preta' soils contained up to 70 times more black carbon than the surrounding soils. Due to its polycyclic aromatic structure, black carbon is chemically and microbially stable and persists in the environment over centuries. Oxidation during this time produces carboxylic groups on the edges of the aromatic backbone, which increases its nutrient-holding capacity. We conclude that black carbon can act as a significant carbon sink and is a key factor for sustainable and fertile soils, especially in the humid tropics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s001140000193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 820 citations 820 popularity Top 0.1% influence Top 0.1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s001140000193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Norman Gentsch; Robert Mikutta; Robert Mikutta; Jiří Bárta; Cynthia Minnich; Cynthia Minnich; Stephanie Turner; Roland Fuß; Tim Urich; Tim Urich; Antje Gittel; Georg Guggenberger; Georg Guggenberger; Birgit Wild; Petr Čapek; Frank Schaarschmidt; Hana Šantrůčková; Andreas Richter; Katka Diáková; Nikolay Lashchinskiy; Olga Shibistova; Olga Shibistova; Jörg Schnecker; Jörg Schnecker; Marion Schrumpf;doi: 10.1111/gcb.14316
pmid: 29774972
AbstractClimate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral‐organic associations (MOA) on the microbial accessibility ofOMin permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soilOCturnover is affected by mineral controls, the heavy fraction (HF) representing mostlyMOAwas obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and theirHFwere comparatively incubated for 175 days at 5 and 15°C. TheHFwas equivalent to 70 ± 9% of the bulkCO2respiration as compared to a share of 63 ± 1% of bulkOCthat was stored in theHF. Significant reduction ofOCmineralization was found in all treatments with increasingOCcontent of theHF(HF‐OC), clay‐size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in theHF. A concurrent increase in the metal‐to‐HF‐OCratios with soil depth suggests a stronger bonding ofOMto minerals in the subsoil. There, the younger14C signature inCO2than that of theOCindicates a preferential decomposition of the more recentOMand the existence of aMOAfraction with limited access ofOMto decomposers. These results indicate strong mineral controls on the decomposability ofOMafter permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence thatOMtemperature sensitivity can be attenuated byMOAin permafrost soils.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Tangarife Escobar, Andres; Guggenberger, Georg; Feng, Xiaojuan; Muñoz, Estefania; +4 AuthorsTangarife Escobar, Andres; Guggenberger, Georg; Feng, Xiaojuan; Muñoz, Estefania; Chanca, Ingrid; Peichl, Matthias; Smith, Paul; Sierra, Carlos;Files for the manuscript “Radiocarbon Isotopic Disequilibrium Shows Little Incorporation of New Carbon in Soils and Fast Cycling of a Boreal Forest Ecosystem” 1. “Raw_Data” folder contains the files in .xlsx: - Lab_Atmospheric_Samples: D14C results from ambient air at the sampled heights. - Lab_Soil_Respiration: D14C results with date and integration time for the FFSR sampling campaign. - Lab_Solid_Samples: D14C and TOC results for soil, vegetation, roots, fungi and incubation samples.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10952030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10952030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Breidenbach, Andreas; Schleuß, Per-Marten; Liu, Shibin; Schneider, Dominik; de la Haye, Tilman; Dippold, Michaela Anna; Miehe, Georg; Heitkamp, Felix; Seeber, Elke; Mason-Jones, Kyle; Xu, Xingliang; Huanming, Yang; Xu, Jianchu; Dorji, Tsechoe; Gube, Matthias; Norf, Helge; Meier, Jutta; Guggenberger, Georg; Kuzyakov, Yakov; Spielvogel, Sandra;PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.918234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.918234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Russian FederationPublisher:Wiley Kammer, A.; Hagedorn, F.; Shevchenko, I. G.; Leifeld, J.; Guggenberger, G.; Goryacheva, T.; Rigling, A.; Moiseev, P.;AbstractHistorical photographs document that during the last century, forests have expanded upwards by 60–80 m into former tundra of the pristine Ural mountains. We assessed how the shift of the high‐altitude treeline ecotone might affect soil organic matter (SOM) dynamics. On the gentle slopes of Mali Iremel in the Southern Urals, we (1) determined the differences in SOM stocks and properties from the tundra at 1360 m above sea level (a.s.l.) to the subalpine forest at 1260 m a.s.l., and (2) measured carbon (C) and nitrogen (N) mineralization from tundra and forest soils at 7 and 20 °C in a 6‐month incubation experiment. C stocks of organic layers were 3.6±0.3 kg C m−2 in the tundra and 1.9±0.2 kg C m−2 in the forest. Mineral soils down to the bedrock stored significantly more C in the forest, and thus, total soil C stocks were slightly but insignificantly greater in the forest (+3 kg C m−2). Assuming a space for time approach based on tree ages suggests that the soil C sink due to the forest expansion during the last century was at most 30 g C m−2 yr−1. Diffuse reflective infrared spectroscopy and scanning calorimetry revealed that SOM under forest was less humified in both organic and mineral horizons and, therefore, contained more available substrate. Consistent with this result, C mineralization rates of organic layers and A horizons of the forest were two to four times greater than those of tundra soils. This difference was similar in magnitude to the effect of increasing the incubation temperature from 7 to 20 °C. Hence, indirect climate change effects through an upward expansion of forests can be much larger than direct warming effects (Δ0.3 K across the treeline). Net N mineralization was 2.5 to six times greater in forest than in tundra soils, suggesting that an advancing treeline likely increases N availability. This may provide a nutritional basis for the fivefold increase in plant biomass and a tripling in productivity from the tundra to the forest. In summary, our results suggest that an upward expansion of forest has small net effects on C storage in soils but leads to changes in SOM quality, accelerates C cycling and increases net N mineralization, which in turn might stimulate plant growth and thus C sequestration in tree biomass.
Electronic archive o... arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2009.01856.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 85 citations 85 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electronic archive o... arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2009.01856.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 30 Apr 2024 NetherlandsPublisher:Frontiers Media SA Funded by:SNSF | Preventing Amazonian tipp...SNSF| Preventing Amazonian tipping points: conserving forest patches and planting agroforests as a strategy to mitigate regional changes in rainfall patternsRebecca Froese; Rebecca Froese; Rebecca Froese; Alberto Andrino; Renzo Giudice; Benjamin Stuch; Simone Kilian Salas; Jürgen Böhner; Diana Boy; Jens Boy; Foster Brown; Elisa Díaz García; Diana Figueroa; Oliver Frör; Georg Guggenberger; Marcus A. Horn; Shabeh ul Hasson; Christopher Jung; Elisabeth G. Lagneaux; Elisabeth G. Lagneaux; Katharina H. E. Meurer; Claudia Pinzón Cuellar; Rüdiger Schaldach; Sabina Cerruto Ribeiro; Janpeter Schilling; Janpeter Schilling; Fernando A. Schmidt; Regine Schönenberg; Galia Selaya; Claudia M. Vega; Vanessa M. S. Vetter; Miguel Villavicenio; Daniel Callo-Concha; Daniel Callo-Concha; Merel Jansen; Merel Jansen; Merel Jansen; Merel Jansen; Hermann F. Jungkunst;Humans play an interconnecting role in social-ecological systems (SES), they are part of these systems and act as agents of their destruction and regulation. This study aims to provide an analytical framework, which combines the concept of SES with the concept of tipping dynamics. As a result, we propose an analytical framework describing relevant dynamics and feedbacks within SES based on two matrixes: the “tipping matrix” and the “cross-impact matrix.” We take the Southwestern Amazon as an example for tropical regions at large and apply the proposed analytical framework to identify key underlying sub-systems within the study region: the soil ecosystem, the household livelihood system, the regional social system, and the regional climate system, which are interconnected through a network of feedbacks. We consider these sub-systems as tipping elements (TE), which when put under stress, can cross a tipping point (TP), resulting in a qualitative and potentially irreversible change of the respective TE. By systematically assessing linkages and feedbacks within and between TEs, our proposed analytical framework can provide an entry point for empirically assessing tipping point dynamics such as “tipping cascades,” which means that the crossing of a TP in one TE may force the tipping of another TE. Policy implications: The proposed joint description of the structure and dynamics within and across SES in respect to characteristics of tipping point dynamics promotes a better understanding of human-nature interactions and critical linkages within regional SES that may be used for effectively informing and directing empirical tipping point assessments, monitoring or intervention purposes. Thereby, the framework can inform policy-making for enhancing the resilience of regional SES.
Frontiers in Climate arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2023.1145942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Climate arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2023.1145942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 09 Dec 2019Publisher:Springer Science and Business Media LLC Diana Heuermann; Norman Gentsch; Jens Boy; Dörte Schweneker; Ulf Feuerstein; Jonas Groß; Bernhard Bauer; Georg Guggenberger; Nicolaus von Wirén;AbstractThe potential of a plant species to acquire nutrients depends on its ability to explore the soil by its root system. Co-cultivation of different species is anticipated to lead to vertical root niche differentiation and thus to higher soil nutrient depletion. Using a qPCR-based method we quantified root biomass distribution of four catch crop species in vertical soil profiles in pure vs. mixed stands. Pure stands of mustard and phacelia robustly reached 70 cm soil depth, while oat preferably colonized upper soil layers, and clover developed the shallowest and smallest root system. Analysis of residual nitrate pools in different soil depths and correlation with root biomass showed that, besides rooting depth also root biomass determines soil nitrogen depletion. While occupying the same vertical niches as in pure stands, mustard and phacelia dominated total root biomass of the mix. In contrast, root biomass of clover and oat was severely suppressed in presence of the other species. Below-ground biomass profiling indicated low niche complementarity among the root systems of the examined species. Nonetheless, the mixture mostly overyielded root biomass of the pure stands and thus shows higher potential for efficient soil exploration by roots.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-48060-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-48060-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Breidenbach, Andreas; Schleuß, Per-Marten; Liu, Shibin; Schneider, Dominik; de la Haye, Tilman; Dippold, Michaela Anna; Miehe, Georg; Heitkamp, Felix; Seeber, Elke; Mason-Jones, Kyle; Xu, Xingliang; Huanming, Yang; Xu, Jianchu; Dorji, Tsechoe; Gube, Matthias; Norf, Helge; Meier, Jutta; Guggenberger, Georg; Kuzyakov, Yakov; Spielvogel, Sandra;PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.936570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.936570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Oxford University Press (OUP) Esther Enowashu; Nicole Dörr; Nicole Dörr; Thomas Brune; Ellen Kandeler; Norbert Lamersdorf; Georg Guggenberger; Georg Guggenberger; Laurent Philippot;pmid: 19220860
A field-scale manipulation experiment conducted for 16 years in a Norway spruce forest at Solling, Central Germany, was used to follow the long-term response of total soil bacteria, nitrate reducers and denitrifiers under conditions of reduced N deposition. N was experimentally removed from throughfall by a roof construction ('clean rain plot'). We used substrate-induced respiration (SIR) to characterize the active fraction of soil microbial biomass and potential nitrate reduction to quantify the activity of nitrate reducers. The abundance of total bacteria, nitrate reducers and denitrifiers in different soil layers was analysed by quantitative PCR of 16S rRNA gene, nitrate reduction and denitrification genes. Reduced N deposition temporarily affected the active fraction of the total microbial community (SIR) as well as nitrate reductase activity. However, the size of the total, nitrate reducer and denitrifier communities did not respond to reduced N deposition. Soil depth and sampling date had a greater influence on the density and activity of soil microorganisms than reduced deposition. An increase in the nosZ/16S rRNA gene and nosZ/nirK ratios with soil depth suggests that the proportion of denitrifiers capable of reducing N(2)O into N(2) is larger in the mineral soil layer than in the organic layer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1574-6941.2008.00632.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1574-6941.2008.00632.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Breidenbach, Andreas; Schleuß, Per-Marten; Liu, Shibin; Schneider, Dominik; de la Haye, Tilman; Dippold, Michaela Anna; Miehe, Georg; Heitkamp, Felix; Seeber, Elke; Mason-Jones, Kyle; Xu, Xingliang; Huanming, Yang; Xu, Jianchu; Dorji, Tsechoe; Gube, Matthias; Norf, Helge; Meier, Jutta; Guggenberger, Georg; Kuzyakov, Yakov; Spielvogel, Sandra;PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.918236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.918236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Springer Science and Business Media LLC Authors: Ludwig Haumaier; Georg Guggenberger; Bruno Glaser; Wolfgang Zech;pmid: 11302125
Many soils of the lowland humid tropics are thought to be too infertile to support sustainable agriculture. However, there is strong evidence that permanent or semi-permanent agriculture can itself create sustainably fertile soils known as 'Terra Preta' soils. These soils not only contain higher concentrations of nutrients such as nitrogen, phosphorus, potassium and calcium, but also greater amounts of stable soil organic matter. Frequent findings of charcoal and highly aromatic humic substances suggest that residues of incomplete combustion of organic material (black carbon) are a key factor in the persistence of soil organic matter in these soils. Our investigations showed that 'Terra Preta' soils contained up to 70 times more black carbon than the surrounding soils. Due to its polycyclic aromatic structure, black carbon is chemically and microbially stable and persists in the environment over centuries. Oxidation during this time produces carboxylic groups on the edges of the aromatic backbone, which increases its nutrient-holding capacity. We conclude that black carbon can act as a significant carbon sink and is a key factor for sustainable and fertile soils, especially in the humid tropics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s001140000193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 820 citations 820 popularity Top 0.1% influence Top 0.1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s001140000193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Norman Gentsch; Robert Mikutta; Robert Mikutta; Jiří Bárta; Cynthia Minnich; Cynthia Minnich; Stephanie Turner; Roland Fuß; Tim Urich; Tim Urich; Antje Gittel; Georg Guggenberger; Georg Guggenberger; Birgit Wild; Petr Čapek; Frank Schaarschmidt; Hana Šantrůčková; Andreas Richter; Katka Diáková; Nikolay Lashchinskiy; Olga Shibistova; Olga Shibistova; Jörg Schnecker; Jörg Schnecker; Marion Schrumpf;doi: 10.1111/gcb.14316
pmid: 29774972
AbstractClimate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral‐organic associations (MOA) on the microbial accessibility ofOMin permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soilOCturnover is affected by mineral controls, the heavy fraction (HF) representing mostlyMOAwas obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and theirHFwere comparatively incubated for 175 days at 5 and 15°C. TheHFwas equivalent to 70 ± 9% of the bulkCO2respiration as compared to a share of 63 ± 1% of bulkOCthat was stored in theHF. Significant reduction ofOCmineralization was found in all treatments with increasingOCcontent of theHF(HF‐OC), clay‐size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in theHF. A concurrent increase in the metal‐to‐HF‐OCratios with soil depth suggests a stronger bonding ofOMto minerals in the subsoil. There, the younger14C signature inCO2than that of theOCindicates a preferential decomposition of the more recentOMand the existence of aMOAfraction with limited access ofOMto decomposers. These results indicate strong mineral controls on the decomposability ofOMafter permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence thatOMtemperature sensitivity can be attenuated byMOAin permafrost soils.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Tangarife Escobar, Andres; Guggenberger, Georg; Feng, Xiaojuan; Muñoz, Estefania; +4 AuthorsTangarife Escobar, Andres; Guggenberger, Georg; Feng, Xiaojuan; Muñoz, Estefania; Chanca, Ingrid; Peichl, Matthias; Smith, Paul; Sierra, Carlos;Files for the manuscript “Radiocarbon Isotopic Disequilibrium Shows Little Incorporation of New Carbon in Soils and Fast Cycling of a Boreal Forest Ecosystem” 1. “Raw_Data” folder contains the files in .xlsx: - Lab_Atmospheric_Samples: D14C results from ambient air at the sampled heights. - Lab_Soil_Respiration: D14C results with date and integration time for the FFSR sampling campaign. - Lab_Solid_Samples: D14C and TOC results for soil, vegetation, roots, fungi and incubation samples.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10952030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10952030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Breidenbach, Andreas; Schleuß, Per-Marten; Liu, Shibin; Schneider, Dominik; de la Haye, Tilman; Dippold, Michaela Anna; Miehe, Georg; Heitkamp, Felix; Seeber, Elke; Mason-Jones, Kyle; Xu, Xingliang; Huanming, Yang; Xu, Jianchu; Dorji, Tsechoe; Gube, Matthias; Norf, Helge; Meier, Jutta; Guggenberger, Georg; Kuzyakov, Yakov; Spielvogel, Sandra;PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.918234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.918234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Russian FederationPublisher:Wiley Kammer, A.; Hagedorn, F.; Shevchenko, I. G.; Leifeld, J.; Guggenberger, G.; Goryacheva, T.; Rigling, A.; Moiseev, P.;AbstractHistorical photographs document that during the last century, forests have expanded upwards by 60–80 m into former tundra of the pristine Ural mountains. We assessed how the shift of the high‐altitude treeline ecotone might affect soil organic matter (SOM) dynamics. On the gentle slopes of Mali Iremel in the Southern Urals, we (1) determined the differences in SOM stocks and properties from the tundra at 1360 m above sea level (a.s.l.) to the subalpine forest at 1260 m a.s.l., and (2) measured carbon (C) and nitrogen (N) mineralization from tundra and forest soils at 7 and 20 °C in a 6‐month incubation experiment. C stocks of organic layers were 3.6±0.3 kg C m−2 in the tundra and 1.9±0.2 kg C m−2 in the forest. Mineral soils down to the bedrock stored significantly more C in the forest, and thus, total soil C stocks were slightly but insignificantly greater in the forest (+3 kg C m−2). Assuming a space for time approach based on tree ages suggests that the soil C sink due to the forest expansion during the last century was at most 30 g C m−2 yr−1. Diffuse reflective infrared spectroscopy and scanning calorimetry revealed that SOM under forest was less humified in both organic and mineral horizons and, therefore, contained more available substrate. Consistent with this result, C mineralization rates of organic layers and A horizons of the forest were two to four times greater than those of tundra soils. This difference was similar in magnitude to the effect of increasing the incubation temperature from 7 to 20 °C. Hence, indirect climate change effects through an upward expansion of forests can be much larger than direct warming effects (Δ0.3 K across the treeline). Net N mineralization was 2.5 to six times greater in forest than in tundra soils, suggesting that an advancing treeline likely increases N availability. This may provide a nutritional basis for the fivefold increase in plant biomass and a tripling in productivity from the tundra to the forest. In summary, our results suggest that an upward expansion of forest has small net effects on C storage in soils but leads to changes in SOM quality, accelerates C cycling and increases net N mineralization, which in turn might stimulate plant growth and thus C sequestration in tree biomass.
Electronic archive o... arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2009.01856.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 85 citations 85 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electronic archive o... arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2009.01856.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 30 Apr 2024 NetherlandsPublisher:Frontiers Media SA Funded by:SNSF | Preventing Amazonian tipp...SNSF| Preventing Amazonian tipping points: conserving forest patches and planting agroforests as a strategy to mitigate regional changes in rainfall patternsRebecca Froese; Rebecca Froese; Rebecca Froese; Alberto Andrino; Renzo Giudice; Benjamin Stuch; Simone Kilian Salas; Jürgen Böhner; Diana Boy; Jens Boy; Foster Brown; Elisa Díaz García; Diana Figueroa; Oliver Frör; Georg Guggenberger; Marcus A. Horn; Shabeh ul Hasson; Christopher Jung; Elisabeth G. Lagneaux; Elisabeth G. Lagneaux; Katharina H. E. Meurer; Claudia Pinzón Cuellar; Rüdiger Schaldach; Sabina Cerruto Ribeiro; Janpeter Schilling; Janpeter Schilling; Fernando A. Schmidt; Regine Schönenberg; Galia Selaya; Claudia M. Vega; Vanessa M. S. Vetter; Miguel Villavicenio; Daniel Callo-Concha; Daniel Callo-Concha; Merel Jansen; Merel Jansen; Merel Jansen; Merel Jansen; Hermann F. Jungkunst;Humans play an interconnecting role in social-ecological systems (SES), they are part of these systems and act as agents of their destruction and regulation. This study aims to provide an analytical framework, which combines the concept of SES with the concept of tipping dynamics. As a result, we propose an analytical framework describing relevant dynamics and feedbacks within SES based on two matrixes: the “tipping matrix” and the “cross-impact matrix.” We take the Southwestern Amazon as an example for tropical regions at large and apply the proposed analytical framework to identify key underlying sub-systems within the study region: the soil ecosystem, the household livelihood system, the regional social system, and the regional climate system, which are interconnected through a network of feedbacks. We consider these sub-systems as tipping elements (TE), which when put under stress, can cross a tipping point (TP), resulting in a qualitative and potentially irreversible change of the respective TE. By systematically assessing linkages and feedbacks within and between TEs, our proposed analytical framework can provide an entry point for empirically assessing tipping point dynamics such as “tipping cascades,” which means that the crossing of a TP in one TE may force the tipping of another TE. Policy implications: The proposed joint description of the structure and dynamics within and across SES in respect to characteristics of tipping point dynamics promotes a better understanding of human-nature interactions and critical linkages within regional SES that may be used for effectively informing and directing empirical tipping point assessments, monitoring or intervention purposes. Thereby, the framework can inform policy-making for enhancing the resilience of regional SES.
Frontiers in Climate arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2023.1145942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Climate arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2023.1145942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 09 Dec 2019Publisher:Springer Science and Business Media LLC Diana Heuermann; Norman Gentsch; Jens Boy; Dörte Schweneker; Ulf Feuerstein; Jonas Groß; Bernhard Bauer; Georg Guggenberger; Nicolaus von Wirén;AbstractThe potential of a plant species to acquire nutrients depends on its ability to explore the soil by its root system. Co-cultivation of different species is anticipated to lead to vertical root niche differentiation and thus to higher soil nutrient depletion. Using a qPCR-based method we quantified root biomass distribution of four catch crop species in vertical soil profiles in pure vs. mixed stands. Pure stands of mustard and phacelia robustly reached 70 cm soil depth, while oat preferably colonized upper soil layers, and clover developed the shallowest and smallest root system. Analysis of residual nitrate pools in different soil depths and correlation with root biomass showed that, besides rooting depth also root biomass determines soil nitrogen depletion. While occupying the same vertical niches as in pure stands, mustard and phacelia dominated total root biomass of the mix. In contrast, root biomass of clover and oat was severely suppressed in presence of the other species. Below-ground biomass profiling indicated low niche complementarity among the root systems of the examined species. Nonetheless, the mixture mostly overyielded root biomass of the pure stands and thus shows higher potential for efficient soil exploration by roots.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-48060-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-48060-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Breidenbach, Andreas; Schleuß, Per-Marten; Liu, Shibin; Schneider, Dominik; de la Haye, Tilman; Dippold, Michaela Anna; Miehe, Georg; Heitkamp, Felix; Seeber, Elke; Mason-Jones, Kyle; Xu, Xingliang; Huanming, Yang; Xu, Jianchu; Dorji, Tsechoe; Gube, Matthias; Norf, Helge; Meier, Jutta; Guggenberger, Georg; Kuzyakov, Yakov; Spielvogel, Sandra;PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.936570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.936570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Oxford University Press (OUP) Esther Enowashu; Nicole Dörr; Nicole Dörr; Thomas Brune; Ellen Kandeler; Norbert Lamersdorf; Georg Guggenberger; Georg Guggenberger; Laurent Philippot;pmid: 19220860
A field-scale manipulation experiment conducted for 16 years in a Norway spruce forest at Solling, Central Germany, was used to follow the long-term response of total soil bacteria, nitrate reducers and denitrifiers under conditions of reduced N deposition. N was experimentally removed from throughfall by a roof construction ('clean rain plot'). We used substrate-induced respiration (SIR) to characterize the active fraction of soil microbial biomass and potential nitrate reduction to quantify the activity of nitrate reducers. The abundance of total bacteria, nitrate reducers and denitrifiers in different soil layers was analysed by quantitative PCR of 16S rRNA gene, nitrate reduction and denitrification genes. Reduced N deposition temporarily affected the active fraction of the total microbial community (SIR) as well as nitrate reductase activity. However, the size of the total, nitrate reducer and denitrifier communities did not respond to reduced N deposition. Soil depth and sampling date had a greater influence on the density and activity of soil microorganisms than reduced deposition. An increase in the nosZ/16S rRNA gene and nosZ/nirK ratios with soil depth suggests that the proportion of denitrifiers capable of reducing N(2)O into N(2) is larger in the mineral soil layer than in the organic layer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1574-6941.2008.00632.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1574-6941.2008.00632.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu