- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:American Chemical Society (ACS) Katelin A. Weitzel; Daniel R. Herber; Sherry Stout; Zhe Huang; Sean C. Stokes; A. Miara; Jordan Macknick; Miguel Arias-Paic; Tiezheng Tong; Dionysios D. Dionysiou; Michael Talmadge; Todd M. Bandhauer; Thomas Borch; Alicen Kandt; Brandi M. Grauberger; Anna Evans; Anna Evans; Robert B. Young; Jennifer Stokes-Draut; So-Ryong Chae; Minghao Kong; Charifa A. Hejase; Parthiv Kurup;Irrigation accounts for 42% of the total freshwater withdrawals in the United States. Climate change, the pressure of a growing population, degrading water quality, and increased competition from other sectors could constrain continuous supply to meet future agricultural water demand. This study presents an evaluation framework to assess the potential reuse of agricultural drainage water for crop irrigation. Using a regional approach, we review the current state of agricultural drainage treatment and reuse and the institutional, economic, and other barriers that can influence the reuse decision. In the 31 eastern states, agricultural drainage contains valuable nutrients that can be reused for irrigation with minimal treatment, while the 17 western states struggle with large volumes of saline drainage that can contain constituents of concern (e.g., selenium), preventing reuse without treatment. Using a new decision-support tool called WaterTAP3, a potential treatment train for saline agricultural drainage was analyzed to identify treatment challenges, research needs, and the potential implementation at a larger scale. As demonstrated by our case study, desalination of agricultural drainage is costly and energy intensive and will require sizable investments to fully develop and optimize technologies as well as manage the generated waste and brine.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:American Chemical Society (ACS) Katelin A. Weitzel; Daniel R. Herber; Sherry Stout; Zhe Huang; Sean C. Stokes; A. Miara; Jordan Macknick; Miguel Arias-Paic; Tiezheng Tong; Dionysios D. Dionysiou; Michael Talmadge; Todd M. Bandhauer; Thomas Borch; Alicen Kandt; Brandi M. Grauberger; Anna Evans; Anna Evans; Robert B. Young; Jennifer Stokes-Draut; So-Ryong Chae; Minghao Kong; Charifa A. Hejase; Parthiv Kurup;Irrigation accounts for 42% of the total freshwater withdrawals in the United States. Climate change, the pressure of a growing population, degrading water quality, and increased competition from other sectors could constrain continuous supply to meet future agricultural water demand. This study presents an evaluation framework to assess the potential reuse of agricultural drainage water for crop irrigation. Using a regional approach, we review the current state of agricultural drainage treatment and reuse and the institutional, economic, and other barriers that can influence the reuse decision. In the 31 eastern states, agricultural drainage contains valuable nutrients that can be reused for irrigation with minimal treatment, while the 17 western states struggle with large volumes of saline drainage that can contain constituents of concern (e.g., selenium), preventing reuse without treatment. Using a new decision-support tool called WaterTAP3, a potential treatment train for saline agricultural drainage was analyzed to identify treatment challenges, research needs, and the potential implementation at a larger scale. As demonstrated by our case study, desalination of agricultural drainage is costly and energy intensive and will require sizable investments to fully develop and optimize technologies as well as manage the generated waste and brine.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Jun He; Abdul Raheem; Wafa Dastyar; Dionysios D. Dionysiou; Wei Wang; Wei Wang; Ming Zhao; Ming Zhao; Vineet Singh Sikarwar;Sludge or waste activated sludge (WAS) generated from wastewater treatment plants may be considered a nuisance. It is a key source for secondary environmental contamination on account of the presence of diverse pollutants (polycyclic aromatic hydrocarbons, dioxins, furans, heavy metals, etc.). Innovative and cost-effective sludge treatment pathways are a prerequisite for the safe and environment-friendly disposal of WAS. This article delivers an assessment of the leading disposal (volume reduction) and energy recovery routes such as anaerobic digestion, incineration, pyrolysis, gasification and enhanced digestion using microbial fuel cell along with their comparative evaluation, to measure their suitability for different sludge compositions and resources availability. Furthermore, the authors shed light on the bio-refinery and resource recovery approaches to extract value added products and nutrients from WAS, and control options for metal elements and micro-pollutants in sewage sludge. Recovery of enzymes, bio-plastics, bio-pesticides, proteins and phosphorus are discussed as a means to visualize sludge as a potential opportunity instead of a nuisance.
Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.12.149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 616 citations 616 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.12.149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Jun He; Abdul Raheem; Wafa Dastyar; Dionysios D. Dionysiou; Wei Wang; Wei Wang; Ming Zhao; Ming Zhao; Vineet Singh Sikarwar;Sludge or waste activated sludge (WAS) generated from wastewater treatment plants may be considered a nuisance. It is a key source for secondary environmental contamination on account of the presence of diverse pollutants (polycyclic aromatic hydrocarbons, dioxins, furans, heavy metals, etc.). Innovative and cost-effective sludge treatment pathways are a prerequisite for the safe and environment-friendly disposal of WAS. This article delivers an assessment of the leading disposal (volume reduction) and energy recovery routes such as anaerobic digestion, incineration, pyrolysis, gasification and enhanced digestion using microbial fuel cell along with their comparative evaluation, to measure their suitability for different sludge compositions and resources availability. Furthermore, the authors shed light on the bio-refinery and resource recovery approaches to extract value added products and nutrients from WAS, and control options for metal elements and micro-pollutants in sewage sludge. Recovery of enzymes, bio-plastics, bio-pesticides, proteins and phosphorus are discussed as a means to visualize sludge as a potential opportunity instead of a nuisance.
Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.12.149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 616 citations 616 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.12.149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Jiexu Ye; Zhuowei Cheng; Dionysios D. Dionysiou; Dongzhi Chen; Yousheng Su; Shihan Zhang; Xiaomin Zhang; Ke Feng;pmid: 31926472
Adsorption is an efficient and low-cost technology used to purify volatile organic compounds (VOCs). In the current study, novel microbial adsorbents were synthesized using cells of lyophilized fungi (Ophiostoma stenoceras LLC) or bacteria (Pseudomonas veronii ZW) that were modified by aminomethylation. Based on the adsorption performance and structural characterization results, the modified fungal biosorbent was the best. Its maximum adsorption capacities for ethyl acetate, α-pinene, and n-hexane were 620, 454, and 374 mg·g-1, respectively, which were much higher than those of other synthesized biosorbents. The specific surface area of the fungal biosorbent was 20 m2·g-1, and most of the components were hydrocarbon compounds and polysaccharides. The VOC adsorption process on these synthesized biosorbents was in accordance with the Langmuir isothermal model and the pseudo-first-order kinetic model, thereby suggesting that physical adsorption was the dominant mechanism. The fungal biosorbent could be used for five consecutive VOC sorption-desorption cycles without any obvious decrease in adsorption capacity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Jiexu Ye; Zhuowei Cheng; Dionysios D. Dionysiou; Dongzhi Chen; Yousheng Su; Shihan Zhang; Xiaomin Zhang; Ke Feng;pmid: 31926472
Adsorption is an efficient and low-cost technology used to purify volatile organic compounds (VOCs). In the current study, novel microbial adsorbents were synthesized using cells of lyophilized fungi (Ophiostoma stenoceras LLC) or bacteria (Pseudomonas veronii ZW) that were modified by aminomethylation. Based on the adsorption performance and structural characterization results, the modified fungal biosorbent was the best. Its maximum adsorption capacities for ethyl acetate, α-pinene, and n-hexane were 620, 454, and 374 mg·g-1, respectively, which were much higher than those of other synthesized biosorbents. The specific surface area of the fungal biosorbent was 20 m2·g-1, and most of the components were hydrocarbon compounds and polysaccharides. The VOC adsorption process on these synthesized biosorbents was in accordance with the Langmuir isothermal model and the pseudo-first-order kinetic model, thereby suggesting that physical adsorption was the dominant mechanism. The fungal biosorbent could be used for five consecutive VOC sorption-desorption cycles without any obvious decrease in adsorption capacity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 CroatiaPublisher:Springer Science and Business Media LLC Ana Loncaric Bozic; Hrvoje Kušić; Dionysios D. Dionysiou; Nina Kopčić; Urška Lavrenčič Štangar; Urška Lavrenčič Štangar; Marin Kovačić;pmid: 29127639
One of the most important features of photocatalytic materials intended to be used for water treatment is their long-term stability. The study is focused on the application of thermal and chemical treatments for the reactivation of TiO2-SnS2 composite photocatalyst, prepared by hydrothermal synthesis and immobilized on the glass support using titania/silica binder. Such a catalytic system was applied in solar-driven treatment, solar/TiO2-SnS2/H2O2, for the purification of water contaminated with diclofenac (DCF). The effectiveness of studied reactivation methods for retaining TiO2-SnS2 activity in consecutive cycles was evaluated on basis of DCF removal and conversion, and TOC removal and mineralization of organic content. Besides these water quality parameters, biodegradability changes in DCF aqueous solution treated by solar/TiO2-SnS2/H2O2 process using simply reused (air-dried) and thermally and chemically reactivated composite photocatalyst through six consecutive cycles were monitored. It was established that both thermal and chemical reactivation retain TiO2-SnS2 activity in the second cycle of its reuse. However, both treatments caused the alteration in the TiO2-SnS2 morphology due to the partial transformation of visible-active SnS2 into non-active SnO2. Such alteration, repeated through consecutive reactivation and reuse, was reflected through gradual activity loss of TiO2-SnS2 composite in applied solar-driven water treatment.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIEnvironmental Science and Pollution ResearchArticle . 2018Data sources: Croatian Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-0667-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIEnvironmental Science and Pollution ResearchArticle . 2018Data sources: Croatian Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-0667-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 CroatiaPublisher:Springer Science and Business Media LLC Ana Loncaric Bozic; Hrvoje Kušić; Dionysios D. Dionysiou; Nina Kopčić; Urška Lavrenčič Štangar; Urška Lavrenčič Štangar; Marin Kovačić;pmid: 29127639
One of the most important features of photocatalytic materials intended to be used for water treatment is their long-term stability. The study is focused on the application of thermal and chemical treatments for the reactivation of TiO2-SnS2 composite photocatalyst, prepared by hydrothermal synthesis and immobilized on the glass support using titania/silica binder. Such a catalytic system was applied in solar-driven treatment, solar/TiO2-SnS2/H2O2, for the purification of water contaminated with diclofenac (DCF). The effectiveness of studied reactivation methods for retaining TiO2-SnS2 activity in consecutive cycles was evaluated on basis of DCF removal and conversion, and TOC removal and mineralization of organic content. Besides these water quality parameters, biodegradability changes in DCF aqueous solution treated by solar/TiO2-SnS2/H2O2 process using simply reused (air-dried) and thermally and chemically reactivated composite photocatalyst through six consecutive cycles were monitored. It was established that both thermal and chemical reactivation retain TiO2-SnS2 activity in the second cycle of its reuse. However, both treatments caused the alteration in the TiO2-SnS2 morphology due to the partial transformation of visible-active SnS2 into non-active SnO2. Such alteration, repeated through consecutive reactivation and reuse, was reflected through gradual activity loss of TiO2-SnS2 composite in applied solar-driven water treatment.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIEnvironmental Science and Pollution ResearchArticle . 2018Data sources: Croatian Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-0667-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIEnvironmental Science and Pollution ResearchArticle . 2018Data sources: Croatian Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-0667-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:American Chemical Society (ACS) Yu Wang; Guodong Fang; Tongliang Wu; Cun Liu; Hongbo Hou; Peixin Cui; Qiang Yang; Qiang Yang; Yiyi Zhou; Junxiang Ren; Dionysios D. Dionysiou; Yujun Wang;As the smallest entities in catalysts, single-atom catalysts (SACs) exhibit superior atomic efficiency, advanced activity, and high selectivity. However, their practical applications are inhibited due to their high preparation costs. Here, we developed a novel cobalt–carbon-based SAC derived from the mild pyrolysis of spent coffee grounds soaked in Co (Co-CGBC), in which cobalt atoms atomically disperse and coordinate with the N and S atoms in the carbon substance, as identified by X-ray absorption fine structure (XAFS) spectroscopy combined with high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Co-CGBC is inexpensive and exhibits high efficiency in the activation of peroxymonosulfate (PMS) to degrade a wide range of organic pollutants with a degradation efficiency of 90–100%. Density functional theory (DFT) calculations confirm that the sulfur in the Co–N 3 S 1 active site plays a crucial role in reducing the adsorption energy of PMS and facilitating electron transfer. This work supplies new opportunities to synthesize cost-effective SACs for application in environmental remediation.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:American Chemical Society (ACS) Yu Wang; Guodong Fang; Tongliang Wu; Cun Liu; Hongbo Hou; Peixin Cui; Qiang Yang; Qiang Yang; Yiyi Zhou; Junxiang Ren; Dionysios D. Dionysiou; Yujun Wang;As the smallest entities in catalysts, single-atom catalysts (SACs) exhibit superior atomic efficiency, advanced activity, and high selectivity. However, their practical applications are inhibited due to their high preparation costs. Here, we developed a novel cobalt–carbon-based SAC derived from the mild pyrolysis of spent coffee grounds soaked in Co (Co-CGBC), in which cobalt atoms atomically disperse and coordinate with the N and S atoms in the carbon substance, as identified by X-ray absorption fine structure (XAFS) spectroscopy combined with high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Co-CGBC is inexpensive and exhibits high efficiency in the activation of peroxymonosulfate (PMS) to degrade a wide range of organic pollutants with a degradation efficiency of 90–100%. Density functional theory (DFT) calculations confirm that the sulfur in the Co–N 3 S 1 active site plays a crucial role in reducing the adsorption energy of PMS and facilitating electron transfer. This work supplies new opportunities to synthesize cost-effective SACs for application in environmental remediation.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Changyin Zhu; Fengxiao Zhu; Dionysios D. Dionysiou; Dongmei Zhou; Guodong Fang; Juan Gao;pmid: 29627643
Alcohols such as ethanol (EtOH) and tert-butanol (TBA) are frequently used as quenching agents to identify the primary radical species in the persulfate (PS)-based oxidation processes. However, the contribution of alcohol radicals (ARs) to contaminant degradation in this process has rarely been assessed. In this study, trichloroacetic acid (TCA), phenol, and carbon tetrachloride were selected as probes to test the role of ARs in the thermally activated PS system. It was found that the degradation rates of these compounds were largely depended on their reactivities with ARs and the concentration of dissolved oxygen in the reaction system. In the PS/alcohol system, TCA was degraded efficiently under anaerobic conditions, while it was hardly degraded in the presence of oxygen. The results of electron paramagnetic resonance, reducing radical quenching studies, and the analysis of PS consumption suggested that ARs were the dominant reactive species contributing to TCA degradation in the PS/EtOH system under anaerobic conditions. Further studies indicated that ARs could significantly degrade CCl4 through dechlorination but not phenol. CCl4 was also degraded efficiently by ARs when oxygen in the reaction solution was completely consumed by ARs. This study highlights the important role of alcohol radicals in the degradation of contaminants during quenching studies in PS-activated processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2018.03.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu178 citations 178 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2018.03.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Changyin Zhu; Fengxiao Zhu; Dionysios D. Dionysiou; Dongmei Zhou; Guodong Fang; Juan Gao;pmid: 29627643
Alcohols such as ethanol (EtOH) and tert-butanol (TBA) are frequently used as quenching agents to identify the primary radical species in the persulfate (PS)-based oxidation processes. However, the contribution of alcohol radicals (ARs) to contaminant degradation in this process has rarely been assessed. In this study, trichloroacetic acid (TCA), phenol, and carbon tetrachloride were selected as probes to test the role of ARs in the thermally activated PS system. It was found that the degradation rates of these compounds were largely depended on their reactivities with ARs and the concentration of dissolved oxygen in the reaction system. In the PS/alcohol system, TCA was degraded efficiently under anaerobic conditions, while it was hardly degraded in the presence of oxygen. The results of electron paramagnetic resonance, reducing radical quenching studies, and the analysis of PS consumption suggested that ARs were the dominant reactive species contributing to TCA degradation in the PS/EtOH system under anaerobic conditions. Further studies indicated that ARs could significantly degrade CCl4 through dechlorination but not phenol. CCl4 was also degraded efficiently by ARs when oxygen in the reaction solution was completely consumed by ARs. This study highlights the important role of alcohol radicals in the degradation of contaminants during quenching studies in PS-activated processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2018.03.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu178 citations 178 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2018.03.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2017 United StatesPublisher:MDPI AG Authors: Genaidy, Ash M.; Huston, Ronald L.; Dionysiou, Dionysios D.; Karwowski, Waldemar;“Advances in technology and management not keeping pace with the ever-increasing urban problems” is attributed in this research to the poor understanding of person-focused governance of societal, environmental and economic entities. The objective of this paper is to present an adaptive institutional model of person-driven effectiveness and ineffectiveness. The model proposes that human, ecologic and economic outcomes are heavily influenced by a complex system of systems, spanning from individually unique “non-physical influencers” to a broader set of social and environmental influencers that have a common impact on the larger society-environment-economy (SEE) system. At the heart of the model is an analytic formulation that explains the phenomena of non-physical blocker, enhancer and indifferent, which are responsible for the adaptation and maladaptation of social agents and, accordingly, for the sustainability and unsustainability of SEE systems. Examples are provided to illustrate the model applications: (a) the non-physical and maladaptive syndromes as antecedents of multi-morbidity; and (b) the broadened and narrowed minds as sources of sustainability and unsustainability at the SEE system level within the context of emerging technologies such as engineered nanomaterials.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/4/616/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9040616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/4/616/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9040616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2017 United StatesPublisher:MDPI AG Authors: Genaidy, Ash M.; Huston, Ronald L.; Dionysiou, Dionysios D.; Karwowski, Waldemar;“Advances in technology and management not keeping pace with the ever-increasing urban problems” is attributed in this research to the poor understanding of person-focused governance of societal, environmental and economic entities. The objective of this paper is to present an adaptive institutional model of person-driven effectiveness and ineffectiveness. The model proposes that human, ecologic and economic outcomes are heavily influenced by a complex system of systems, spanning from individually unique “non-physical influencers” to a broader set of social and environmental influencers that have a common impact on the larger society-environment-economy (SEE) system. At the heart of the model is an analytic formulation that explains the phenomena of non-physical blocker, enhancer and indifferent, which are responsible for the adaptation and maladaptation of social agents and, accordingly, for the sustainability and unsustainability of SEE systems. Examples are provided to illustrate the model applications: (a) the non-physical and maladaptive syndromes as antecedents of multi-morbidity; and (b) the broadened and narrowed minds as sources of sustainability and unsustainability at the SEE system level within the context of emerging technologies such as engineered nanomaterials.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/4/616/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9040616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/4/616/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9040616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Publicly fundedAsh Genaidy; Wael H.M. Abdelraheem; Dionysios D. Dionysiou; Thabet Tolaymat; Amro El Badawy;Economic value is no longer adequate by itself as a proxy for the value-added benefits (VAB) assumed to be generated by emerging technologies such as engineered nanomaterials (ENMs). This study was conducted to explore the potential to establish an integrated sociotechnical framework with the end goal to assess whether or not ENMs and nano-enabled products contribute VAB. Based on the research in this study, it is suggested that all stakeholders in the larger society-environment-economy (SEE) system should develop an understanding of the multiple interrelationships within and between the diverse constituents along the particle lifecycle trajectory to capture their influence on the system benefit and risk outcomes. Furthermore, the sociotechnical framework establishes an additional three-step process: (1) at the pre-design stage, the test of VAB should be assessed using an expert panel representing the different segments of SEE, the social principles of design are detailed and customized to the needs of ENMs and nano-enabled products, and an economic appraisal is conducted to justify the VAB on material grounds; (2) at the design stage, the technical principles should be examined and detailed to ensure the compatibility of stakeholder needs; and (3) an iterative adaptive cycle should be conducted to re-examine the sociotechnical principles on a periodic basis. Within this context, ENMs are considered sustainable when (a) the conditions of VAB and minimal risk elements are satisfied in a sequential order, with VAB demonstrated at the pre-design stage, then at the design stage ENMs posing no harm greater than minimal levels to the SEE constituents; and (b) ENMs and nano-enabled products are bounded by a finite time limit. In addition, to reach the conditions of sustainability, the role of all SEE stakeholders should be broadened (e.g., regulatory agencies should transform their roles from not only the control of risks of negative implications, but also the establishment of positive implications as well).
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-016-1146-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-016-1146-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Publicly fundedAsh Genaidy; Wael H.M. Abdelraheem; Dionysios D. Dionysiou; Thabet Tolaymat; Amro El Badawy;Economic value is no longer adequate by itself as a proxy for the value-added benefits (VAB) assumed to be generated by emerging technologies such as engineered nanomaterials (ENMs). This study was conducted to explore the potential to establish an integrated sociotechnical framework with the end goal to assess whether or not ENMs and nano-enabled products contribute VAB. Based on the research in this study, it is suggested that all stakeholders in the larger society-environment-economy (SEE) system should develop an understanding of the multiple interrelationships within and between the diverse constituents along the particle lifecycle trajectory to capture their influence on the system benefit and risk outcomes. Furthermore, the sociotechnical framework establishes an additional three-step process: (1) at the pre-design stage, the test of VAB should be assessed using an expert panel representing the different segments of SEE, the social principles of design are detailed and customized to the needs of ENMs and nano-enabled products, and an economic appraisal is conducted to justify the VAB on material grounds; (2) at the design stage, the technical principles should be examined and detailed to ensure the compatibility of stakeholder needs; and (3) an iterative adaptive cycle should be conducted to re-examine the sociotechnical principles on a periodic basis. Within this context, ENMs are considered sustainable when (a) the conditions of VAB and minimal risk elements are satisfied in a sequential order, with VAB demonstrated at the pre-design stage, then at the design stage ENMs posing no harm greater than minimal levels to the SEE constituents; and (b) ENMs and nano-enabled products are bounded by a finite time limit. In addition, to reach the conditions of sustainability, the role of all SEE stakeholders should be broadened (e.g., regulatory agencies should transform their roles from not only the control of risks of negative implications, but also the establishment of positive implications as well).
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-016-1146-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-016-1146-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Publicly fundedThabet Tolaymat; Ash Genaidy; Wael H.M. Abdelraheem; Wael H.M. Abdelraheem; Dionysios D. Dionysiou; Amro El Badawy;From regulatory perspectives, there has been a debate in the scientific literature as to whether or not metallic engineered nanomaterials (ENMs) should be treated as new chemicals in terms of their toxic effects upon biological species. This debate has prompted us to examine the scientific evidence to validate those paradoxical claims. Investigations covering the effects of metallic ENMs and metal-based ions in the same study were included in this research. The findings reported herein suggest that the different arguments are valid if a wider perspective takes into account the common, different and unique effects of metallic nanoparticles versus metal-based ions. This perspective has been evident from investigations of aquatic (lower organisms such as Daphnia magna and higher organisms like zebra fish) and other organisms (e.g., microbes, nematodes, animal and human cells). It is suggested that the regulation of metallic nanomaterial-based products be transformed to a tier-based approach as a function of the common, different and unique effects to manage the complexity brought into light due to the infinite combinations of the particle physical–chemical properties.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-017-1345-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-017-1345-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Publicly fundedThabet Tolaymat; Ash Genaidy; Wael H.M. Abdelraheem; Wael H.M. Abdelraheem; Dionysios D. Dionysiou; Amro El Badawy;From regulatory perspectives, there has been a debate in the scientific literature as to whether or not metallic engineered nanomaterials (ENMs) should be treated as new chemicals in terms of their toxic effects upon biological species. This debate has prompted us to examine the scientific evidence to validate those paradoxical claims. Investigations covering the effects of metallic ENMs and metal-based ions in the same study were included in this research. The findings reported herein suggest that the different arguments are valid if a wider perspective takes into account the common, different and unique effects of metallic nanoparticles versus metal-based ions. This perspective has been evident from investigations of aquatic (lower organisms such as Daphnia magna and higher organisms like zebra fish) and other organisms (e.g., microbes, nematodes, animal and human cells). It is suggested that the regulation of metallic nanomaterial-based products be transformed to a tier-based approach as a function of the common, different and unique effects to manage the complexity brought into light due to the infinite combinations of the particle physical–chemical properties.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-017-1345-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-017-1345-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Elsevier BV Zhonghao Wan; Lin Luo; Daniel C.W. Tsang; Zirui Luo; Yaoyu Zhou; Yaoyu Zhou; Yuqing Sun; Dan Zhi; Dionysios D. Dionysiou; Jianbing Wang;Abstract The ozone-reactive electrochemical membrane (O3-REM) coupled process for tetracycline (TC) removal was developed by coupling ozonation and electrochemical oxidation in a substoichiometric titanium dioxide (Ti4O7) REM reactor. To achieve concurrent and efficient degradation-mineralization, TC was treated by ozonation and electrochemical oxidation over the Ti4O7 REM anode in a sequent manner. TC was nearly completely removed within 20 min, while the total organic carbon (TOC) removal efficiency attained 9.1% in 20 min, and then reached 77.1% in 80 min under optimal conditions of 2 mg/min ozone dosage and 2 mA/cm2 current density. TC was suspected to be oxidized into some four- and three-ring intermediates within 20 min, some two- and one-ring intermediates within 80 min, and eventually carboxylic acids, CO2 and H2O. The concentrations of NO3−, NO2− and NH4+ increased slightly in the first 20 min and then elevated significantly from 20 to 80 min, indicating an enhanced denitrification rate via electrochemical oxidation. Besides, the bioluminescence inhibition ratio exhibited a slight decrease from 54.5% to 50.6% in the first 20 min and then significantly decreased to 14.5% in 80 min, suggesting an augmented toxicity reduction simultaneously by the coupled technology. Overall, the O3-REM coupled process demonstrated higher TC degradation and TOC removal efficiencies, enhanced toxicity-reduction capability, and lower energy consumption for TC removal compared to individual O3 or Ti4O7 REM processes. By comprehensively analyzing the performance, mechanism and energy consumption of TC removal by the O3-REM coupled process, our research provides insights into the application potential of the coupled process to efficiently eliminate the amount and toxicity of various pharmaceuticals from wastewater.
Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2019.123149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2019.123149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Elsevier BV Zhonghao Wan; Lin Luo; Daniel C.W. Tsang; Zirui Luo; Yaoyu Zhou; Yaoyu Zhou; Yuqing Sun; Dan Zhi; Dionysios D. Dionysiou; Jianbing Wang;Abstract The ozone-reactive electrochemical membrane (O3-REM) coupled process for tetracycline (TC) removal was developed by coupling ozonation and electrochemical oxidation in a substoichiometric titanium dioxide (Ti4O7) REM reactor. To achieve concurrent and efficient degradation-mineralization, TC was treated by ozonation and electrochemical oxidation over the Ti4O7 REM anode in a sequent manner. TC was nearly completely removed within 20 min, while the total organic carbon (TOC) removal efficiency attained 9.1% in 20 min, and then reached 77.1% in 80 min under optimal conditions of 2 mg/min ozone dosage and 2 mA/cm2 current density. TC was suspected to be oxidized into some four- and three-ring intermediates within 20 min, some two- and one-ring intermediates within 80 min, and eventually carboxylic acids, CO2 and H2O. The concentrations of NO3−, NO2− and NH4+ increased slightly in the first 20 min and then elevated significantly from 20 to 80 min, indicating an enhanced denitrification rate via electrochemical oxidation. Besides, the bioluminescence inhibition ratio exhibited a slight decrease from 54.5% to 50.6% in the first 20 min and then significantly decreased to 14.5% in 80 min, suggesting an augmented toxicity reduction simultaneously by the coupled technology. Overall, the O3-REM coupled process demonstrated higher TC degradation and TOC removal efficiencies, enhanced toxicity-reduction capability, and lower energy consumption for TC removal compared to individual O3 or Ti4O7 REM processes. By comprehensively analyzing the performance, mechanism and energy consumption of TC removal by the O3-REM coupled process, our research provides insights into the application potential of the coupled process to efficiently eliminate the amount and toxicity of various pharmaceuticals from wastewater.
Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2019.123149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2019.123149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:American Chemical Society (ACS) Katelin A. Weitzel; Daniel R. Herber; Sherry Stout; Zhe Huang; Sean C. Stokes; A. Miara; Jordan Macknick; Miguel Arias-Paic; Tiezheng Tong; Dionysios D. Dionysiou; Michael Talmadge; Todd M. Bandhauer; Thomas Borch; Alicen Kandt; Brandi M. Grauberger; Anna Evans; Anna Evans; Robert B. Young; Jennifer Stokes-Draut; So-Ryong Chae; Minghao Kong; Charifa A. Hejase; Parthiv Kurup;Irrigation accounts for 42% of the total freshwater withdrawals in the United States. Climate change, the pressure of a growing population, degrading water quality, and increased competition from other sectors could constrain continuous supply to meet future agricultural water demand. This study presents an evaluation framework to assess the potential reuse of agricultural drainage water for crop irrigation. Using a regional approach, we review the current state of agricultural drainage treatment and reuse and the institutional, economic, and other barriers that can influence the reuse decision. In the 31 eastern states, agricultural drainage contains valuable nutrients that can be reused for irrigation with minimal treatment, while the 17 western states struggle with large volumes of saline drainage that can contain constituents of concern (e.g., selenium), preventing reuse without treatment. Using a new decision-support tool called WaterTAP3, a potential treatment train for saline agricultural drainage was analyzed to identify treatment challenges, research needs, and the potential implementation at a larger scale. As demonstrated by our case study, desalination of agricultural drainage is costly and energy intensive and will require sizable investments to fully develop and optimize technologies as well as manage the generated waste and brine.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:American Chemical Society (ACS) Katelin A. Weitzel; Daniel R. Herber; Sherry Stout; Zhe Huang; Sean C. Stokes; A. Miara; Jordan Macknick; Miguel Arias-Paic; Tiezheng Tong; Dionysios D. Dionysiou; Michael Talmadge; Todd M. Bandhauer; Thomas Borch; Alicen Kandt; Brandi M. Grauberger; Anna Evans; Anna Evans; Robert B. Young; Jennifer Stokes-Draut; So-Ryong Chae; Minghao Kong; Charifa A. Hejase; Parthiv Kurup;Irrigation accounts for 42% of the total freshwater withdrawals in the United States. Climate change, the pressure of a growing population, degrading water quality, and increased competition from other sectors could constrain continuous supply to meet future agricultural water demand. This study presents an evaluation framework to assess the potential reuse of agricultural drainage water for crop irrigation. Using a regional approach, we review the current state of agricultural drainage treatment and reuse and the institutional, economic, and other barriers that can influence the reuse decision. In the 31 eastern states, agricultural drainage contains valuable nutrients that can be reused for irrigation with minimal treatment, while the 17 western states struggle with large volumes of saline drainage that can contain constituents of concern (e.g., selenium), preventing reuse without treatment. Using a new decision-support tool called WaterTAP3, a potential treatment train for saline agricultural drainage was analyzed to identify treatment challenges, research needs, and the potential implementation at a larger scale. As demonstrated by our case study, desalination of agricultural drainage is costly and energy intensive and will require sizable investments to fully develop and optimize technologies as well as manage the generated waste and brine.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Jun He; Abdul Raheem; Wafa Dastyar; Dionysios D. Dionysiou; Wei Wang; Wei Wang; Ming Zhao; Ming Zhao; Vineet Singh Sikarwar;Sludge or waste activated sludge (WAS) generated from wastewater treatment plants may be considered a nuisance. It is a key source for secondary environmental contamination on account of the presence of diverse pollutants (polycyclic aromatic hydrocarbons, dioxins, furans, heavy metals, etc.). Innovative and cost-effective sludge treatment pathways are a prerequisite for the safe and environment-friendly disposal of WAS. This article delivers an assessment of the leading disposal (volume reduction) and energy recovery routes such as anaerobic digestion, incineration, pyrolysis, gasification and enhanced digestion using microbial fuel cell along with their comparative evaluation, to measure their suitability for different sludge compositions and resources availability. Furthermore, the authors shed light on the bio-refinery and resource recovery approaches to extract value added products and nutrients from WAS, and control options for metal elements and micro-pollutants in sewage sludge. Recovery of enzymes, bio-plastics, bio-pesticides, proteins and phosphorus are discussed as a means to visualize sludge as a potential opportunity instead of a nuisance.
Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.12.149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 616 citations 616 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.12.149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Jun He; Abdul Raheem; Wafa Dastyar; Dionysios D. Dionysiou; Wei Wang; Wei Wang; Ming Zhao; Ming Zhao; Vineet Singh Sikarwar;Sludge or waste activated sludge (WAS) generated from wastewater treatment plants may be considered a nuisance. It is a key source for secondary environmental contamination on account of the presence of diverse pollutants (polycyclic aromatic hydrocarbons, dioxins, furans, heavy metals, etc.). Innovative and cost-effective sludge treatment pathways are a prerequisite for the safe and environment-friendly disposal of WAS. This article delivers an assessment of the leading disposal (volume reduction) and energy recovery routes such as anaerobic digestion, incineration, pyrolysis, gasification and enhanced digestion using microbial fuel cell along with their comparative evaluation, to measure their suitability for different sludge compositions and resources availability. Furthermore, the authors shed light on the bio-refinery and resource recovery approaches to extract value added products and nutrients from WAS, and control options for metal elements and micro-pollutants in sewage sludge. Recovery of enzymes, bio-plastics, bio-pesticides, proteins and phosphorus are discussed as a means to visualize sludge as a potential opportunity instead of a nuisance.
Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.12.149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 616 citations 616 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.12.149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Jiexu Ye; Zhuowei Cheng; Dionysios D. Dionysiou; Dongzhi Chen; Yousheng Su; Shihan Zhang; Xiaomin Zhang; Ke Feng;pmid: 31926472
Adsorption is an efficient and low-cost technology used to purify volatile organic compounds (VOCs). In the current study, novel microbial adsorbents were synthesized using cells of lyophilized fungi (Ophiostoma stenoceras LLC) or bacteria (Pseudomonas veronii ZW) that were modified by aminomethylation. Based on the adsorption performance and structural characterization results, the modified fungal biosorbent was the best. Its maximum adsorption capacities for ethyl acetate, α-pinene, and n-hexane were 620, 454, and 374 mg·g-1, respectively, which were much higher than those of other synthesized biosorbents. The specific surface area of the fungal biosorbent was 20 m2·g-1, and most of the components were hydrocarbon compounds and polysaccharides. The VOC adsorption process on these synthesized biosorbents was in accordance with the Langmuir isothermal model and the pseudo-first-order kinetic model, thereby suggesting that physical adsorption was the dominant mechanism. The fungal biosorbent could be used for five consecutive VOC sorption-desorption cycles without any obvious decrease in adsorption capacity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Jiexu Ye; Zhuowei Cheng; Dionysios D. Dionysiou; Dongzhi Chen; Yousheng Su; Shihan Zhang; Xiaomin Zhang; Ke Feng;pmid: 31926472
Adsorption is an efficient and low-cost technology used to purify volatile organic compounds (VOCs). In the current study, novel microbial adsorbents were synthesized using cells of lyophilized fungi (Ophiostoma stenoceras LLC) or bacteria (Pseudomonas veronii ZW) that were modified by aminomethylation. Based on the adsorption performance and structural characterization results, the modified fungal biosorbent was the best. Its maximum adsorption capacities for ethyl acetate, α-pinene, and n-hexane were 620, 454, and 374 mg·g-1, respectively, which were much higher than those of other synthesized biosorbents. The specific surface area of the fungal biosorbent was 20 m2·g-1, and most of the components were hydrocarbon compounds and polysaccharides. The VOC adsorption process on these synthesized biosorbents was in accordance with the Langmuir isothermal model and the pseudo-first-order kinetic model, thereby suggesting that physical adsorption was the dominant mechanism. The fungal biosorbent could be used for five consecutive VOC sorption-desorption cycles without any obvious decrease in adsorption capacity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 CroatiaPublisher:Springer Science and Business Media LLC Ana Loncaric Bozic; Hrvoje Kušić; Dionysios D. Dionysiou; Nina Kopčić; Urška Lavrenčič Štangar; Urška Lavrenčič Štangar; Marin Kovačić;pmid: 29127639
One of the most important features of photocatalytic materials intended to be used for water treatment is their long-term stability. The study is focused on the application of thermal and chemical treatments for the reactivation of TiO2-SnS2 composite photocatalyst, prepared by hydrothermal synthesis and immobilized on the glass support using titania/silica binder. Such a catalytic system was applied in solar-driven treatment, solar/TiO2-SnS2/H2O2, for the purification of water contaminated with diclofenac (DCF). The effectiveness of studied reactivation methods for retaining TiO2-SnS2 activity in consecutive cycles was evaluated on basis of DCF removal and conversion, and TOC removal and mineralization of organic content. Besides these water quality parameters, biodegradability changes in DCF aqueous solution treated by solar/TiO2-SnS2/H2O2 process using simply reused (air-dried) and thermally and chemically reactivated composite photocatalyst through six consecutive cycles were monitored. It was established that both thermal and chemical reactivation retain TiO2-SnS2 activity in the second cycle of its reuse. However, both treatments caused the alteration in the TiO2-SnS2 morphology due to the partial transformation of visible-active SnS2 into non-active SnO2. Such alteration, repeated through consecutive reactivation and reuse, was reflected through gradual activity loss of TiO2-SnS2 composite in applied solar-driven water treatment.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIEnvironmental Science and Pollution ResearchArticle . 2018Data sources: Croatian Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-0667-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIEnvironmental Science and Pollution ResearchArticle . 2018Data sources: Croatian Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-0667-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 CroatiaPublisher:Springer Science and Business Media LLC Ana Loncaric Bozic; Hrvoje Kušić; Dionysios D. Dionysiou; Nina Kopčić; Urška Lavrenčič Štangar; Urška Lavrenčič Štangar; Marin Kovačić;pmid: 29127639
One of the most important features of photocatalytic materials intended to be used for water treatment is their long-term stability. The study is focused on the application of thermal and chemical treatments for the reactivation of TiO2-SnS2 composite photocatalyst, prepared by hydrothermal synthesis and immobilized on the glass support using titania/silica binder. Such a catalytic system was applied in solar-driven treatment, solar/TiO2-SnS2/H2O2, for the purification of water contaminated with diclofenac (DCF). The effectiveness of studied reactivation methods for retaining TiO2-SnS2 activity in consecutive cycles was evaluated on basis of DCF removal and conversion, and TOC removal and mineralization of organic content. Besides these water quality parameters, biodegradability changes in DCF aqueous solution treated by solar/TiO2-SnS2/H2O2 process using simply reused (air-dried) and thermally and chemically reactivated composite photocatalyst through six consecutive cycles were monitored. It was established that both thermal and chemical reactivation retain TiO2-SnS2 activity in the second cycle of its reuse. However, both treatments caused the alteration in the TiO2-SnS2 morphology due to the partial transformation of visible-active SnS2 into non-active SnO2. Such alteration, repeated through consecutive reactivation and reuse, was reflected through gradual activity loss of TiO2-SnS2 composite in applied solar-driven water treatment.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIEnvironmental Science and Pollution ResearchArticle . 2018Data sources: Croatian Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-0667-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIEnvironmental Science and Pollution ResearchArticle . 2018Data sources: Croatian Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-0667-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:American Chemical Society (ACS) Yu Wang; Guodong Fang; Tongliang Wu; Cun Liu; Hongbo Hou; Peixin Cui; Qiang Yang; Qiang Yang; Yiyi Zhou; Junxiang Ren; Dionysios D. Dionysiou; Yujun Wang;As the smallest entities in catalysts, single-atom catalysts (SACs) exhibit superior atomic efficiency, advanced activity, and high selectivity. However, their practical applications are inhibited due to their high preparation costs. Here, we developed a novel cobalt–carbon-based SAC derived from the mild pyrolysis of spent coffee grounds soaked in Co (Co-CGBC), in which cobalt atoms atomically disperse and coordinate with the N and S atoms in the carbon substance, as identified by X-ray absorption fine structure (XAFS) spectroscopy combined with high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Co-CGBC is inexpensive and exhibits high efficiency in the activation of peroxymonosulfate (PMS) to degrade a wide range of organic pollutants with a degradation efficiency of 90–100%. Density functional theory (DFT) calculations confirm that the sulfur in the Co–N 3 S 1 active site plays a crucial role in reducing the adsorption energy of PMS and facilitating electron transfer. This work supplies new opportunities to synthesize cost-effective SACs for application in environmental remediation.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:American Chemical Society (ACS) Yu Wang; Guodong Fang; Tongliang Wu; Cun Liu; Hongbo Hou; Peixin Cui; Qiang Yang; Qiang Yang; Yiyi Zhou; Junxiang Ren; Dionysios D. Dionysiou; Yujun Wang;As the smallest entities in catalysts, single-atom catalysts (SACs) exhibit superior atomic efficiency, advanced activity, and high selectivity. However, their practical applications are inhibited due to their high preparation costs. Here, we developed a novel cobalt–carbon-based SAC derived from the mild pyrolysis of spent coffee grounds soaked in Co (Co-CGBC), in which cobalt atoms atomically disperse and coordinate with the N and S atoms in the carbon substance, as identified by X-ray absorption fine structure (XAFS) spectroscopy combined with high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Co-CGBC is inexpensive and exhibits high efficiency in the activation of peroxymonosulfate (PMS) to degrade a wide range of organic pollutants with a degradation efficiency of 90–100%. Density functional theory (DFT) calculations confirm that the sulfur in the Co–N 3 S 1 active site plays a crucial role in reducing the adsorption energy of PMS and facilitating electron transfer. This work supplies new opportunities to synthesize cost-effective SACs for application in environmental remediation.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Changyin Zhu; Fengxiao Zhu; Dionysios D. Dionysiou; Dongmei Zhou; Guodong Fang; Juan Gao;pmid: 29627643
Alcohols such as ethanol (EtOH) and tert-butanol (TBA) are frequently used as quenching agents to identify the primary radical species in the persulfate (PS)-based oxidation processes. However, the contribution of alcohol radicals (ARs) to contaminant degradation in this process has rarely been assessed. In this study, trichloroacetic acid (TCA), phenol, and carbon tetrachloride were selected as probes to test the role of ARs in the thermally activated PS system. It was found that the degradation rates of these compounds were largely depended on their reactivities with ARs and the concentration of dissolved oxygen in the reaction system. In the PS/alcohol system, TCA was degraded efficiently under anaerobic conditions, while it was hardly degraded in the presence of oxygen. The results of electron paramagnetic resonance, reducing radical quenching studies, and the analysis of PS consumption suggested that ARs were the dominant reactive species contributing to TCA degradation in the PS/EtOH system under anaerobic conditions. Further studies indicated that ARs could significantly degrade CCl4 through dechlorination but not phenol. CCl4 was also degraded efficiently by ARs when oxygen in the reaction solution was completely consumed by ARs. This study highlights the important role of alcohol radicals in the degradation of contaminants during quenching studies in PS-activated processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2018.03.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu178 citations 178 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2018.03.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Changyin Zhu; Fengxiao Zhu; Dionysios D. Dionysiou; Dongmei Zhou; Guodong Fang; Juan Gao;pmid: 29627643
Alcohols such as ethanol (EtOH) and tert-butanol (TBA) are frequently used as quenching agents to identify the primary radical species in the persulfate (PS)-based oxidation processes. However, the contribution of alcohol radicals (ARs) to contaminant degradation in this process has rarely been assessed. In this study, trichloroacetic acid (TCA), phenol, and carbon tetrachloride were selected as probes to test the role of ARs in the thermally activated PS system. It was found that the degradation rates of these compounds were largely depended on their reactivities with ARs and the concentration of dissolved oxygen in the reaction system. In the PS/alcohol system, TCA was degraded efficiently under anaerobic conditions, while it was hardly degraded in the presence of oxygen. The results of electron paramagnetic resonance, reducing radical quenching studies, and the analysis of PS consumption suggested that ARs were the dominant reactive species contributing to TCA degradation in the PS/EtOH system under anaerobic conditions. Further studies indicated that ARs could significantly degrade CCl4 through dechlorination but not phenol. CCl4 was also degraded efficiently by ARs when oxygen in the reaction solution was completely consumed by ARs. This study highlights the important role of alcohol radicals in the degradation of contaminants during quenching studies in PS-activated processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2018.03.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu178 citations 178 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2018.03.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2017 United StatesPublisher:MDPI AG Authors: Genaidy, Ash M.; Huston, Ronald L.; Dionysiou, Dionysios D.; Karwowski, Waldemar;“Advances in technology and management not keeping pace with the ever-increasing urban problems” is attributed in this research to the poor understanding of person-focused governance of societal, environmental and economic entities. The objective of this paper is to present an adaptive institutional model of person-driven effectiveness and ineffectiveness. The model proposes that human, ecologic and economic outcomes are heavily influenced by a complex system of systems, spanning from individually unique “non-physical influencers” to a broader set of social and environmental influencers that have a common impact on the larger society-environment-economy (SEE) system. At the heart of the model is an analytic formulation that explains the phenomena of non-physical blocker, enhancer and indifferent, which are responsible for the adaptation and maladaptation of social agents and, accordingly, for the sustainability and unsustainability of SEE systems. Examples are provided to illustrate the model applications: (a) the non-physical and maladaptive syndromes as antecedents of multi-morbidity; and (b) the broadened and narrowed minds as sources of sustainability and unsustainability at the SEE system level within the context of emerging technologies such as engineered nanomaterials.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/4/616/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9040616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/4/616/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9040616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2017 United StatesPublisher:MDPI AG Authors: Genaidy, Ash M.; Huston, Ronald L.; Dionysiou, Dionysios D.; Karwowski, Waldemar;“Advances in technology and management not keeping pace with the ever-increasing urban problems” is attributed in this research to the poor understanding of person-focused governance of societal, environmental and economic entities. The objective of this paper is to present an adaptive institutional model of person-driven effectiveness and ineffectiveness. The model proposes that human, ecologic and economic outcomes are heavily influenced by a complex system of systems, spanning from individually unique “non-physical influencers” to a broader set of social and environmental influencers that have a common impact on the larger society-environment-economy (SEE) system. At the heart of the model is an analytic formulation that explains the phenomena of non-physical blocker, enhancer and indifferent, which are responsible for the adaptation and maladaptation of social agents and, accordingly, for the sustainability and unsustainability of SEE systems. Examples are provided to illustrate the model applications: (a) the non-physical and maladaptive syndromes as antecedents of multi-morbidity; and (b) the broadened and narrowed minds as sources of sustainability and unsustainability at the SEE system level within the context of emerging technologies such as engineered nanomaterials.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/4/616/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9040616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/4/616/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9040616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Publicly fundedAsh Genaidy; Wael H.M. Abdelraheem; Dionysios D. Dionysiou; Thabet Tolaymat; Amro El Badawy;Economic value is no longer adequate by itself as a proxy for the value-added benefits (VAB) assumed to be generated by emerging technologies such as engineered nanomaterials (ENMs). This study was conducted to explore the potential to establish an integrated sociotechnical framework with the end goal to assess whether or not ENMs and nano-enabled products contribute VAB. Based on the research in this study, it is suggested that all stakeholders in the larger society-environment-economy (SEE) system should develop an understanding of the multiple interrelationships within and between the diverse constituents along the particle lifecycle trajectory to capture their influence on the system benefit and risk outcomes. Furthermore, the sociotechnical framework establishes an additional three-step process: (1) at the pre-design stage, the test of VAB should be assessed using an expert panel representing the different segments of SEE, the social principles of design are detailed and customized to the needs of ENMs and nano-enabled products, and an economic appraisal is conducted to justify the VAB on material grounds; (2) at the design stage, the technical principles should be examined and detailed to ensure the compatibility of stakeholder needs; and (3) an iterative adaptive cycle should be conducted to re-examine the sociotechnical principles on a periodic basis. Within this context, ENMs are considered sustainable when (a) the conditions of VAB and minimal risk elements are satisfied in a sequential order, with VAB demonstrated at the pre-design stage, then at the design stage ENMs posing no harm greater than minimal levels to the SEE constituents; and (b) ENMs and nano-enabled products are bounded by a finite time limit. In addition, to reach the conditions of sustainability, the role of all SEE stakeholders should be broadened (e.g., regulatory agencies should transform their roles from not only the control of risks of negative implications, but also the establishment of positive implications as well).
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-016-1146-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-016-1146-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Publicly fundedAsh Genaidy; Wael H.M. Abdelraheem; Dionysios D. Dionysiou; Thabet Tolaymat; Amro El Badawy;Economic value is no longer adequate by itself as a proxy for the value-added benefits (VAB) assumed to be generated by emerging technologies such as engineered nanomaterials (ENMs). This study was conducted to explore the potential to establish an integrated sociotechnical framework with the end goal to assess whether or not ENMs and nano-enabled products contribute VAB. Based on the research in this study, it is suggested that all stakeholders in the larger society-environment-economy (SEE) system should develop an understanding of the multiple interrelationships within and between the diverse constituents along the particle lifecycle trajectory to capture their influence on the system benefit and risk outcomes. Furthermore, the sociotechnical framework establishes an additional three-step process: (1) at the pre-design stage, the test of VAB should be assessed using an expert panel representing the different segments of SEE, the social principles of design are detailed and customized to the needs of ENMs and nano-enabled products, and an economic appraisal is conducted to justify the VAB on material grounds; (2) at the design stage, the technical principles should be examined and detailed to ensure the compatibility of stakeholder needs; and (3) an iterative adaptive cycle should be conducted to re-examine the sociotechnical principles on a periodic basis. Within this context, ENMs are considered sustainable when (a) the conditions of VAB and minimal risk elements are satisfied in a sequential order, with VAB demonstrated at the pre-design stage, then at the design stage ENMs posing no harm greater than minimal levels to the SEE constituents; and (b) ENMs and nano-enabled products are bounded by a finite time limit. In addition, to reach the conditions of sustainability, the role of all SEE stakeholders should be broadened (e.g., regulatory agencies should transform their roles from not only the control of risks of negative implications, but also the establishment of positive implications as well).
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-016-1146-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-016-1146-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Publicly fundedThabet Tolaymat; Ash Genaidy; Wael H.M. Abdelraheem; Wael H.M. Abdelraheem; Dionysios D. Dionysiou; Amro El Badawy;From regulatory perspectives, there has been a debate in the scientific literature as to whether or not metallic engineered nanomaterials (ENMs) should be treated as new chemicals in terms of their toxic effects upon biological species. This debate has prompted us to examine the scientific evidence to validate those paradoxical claims. Investigations covering the effects of metallic ENMs and metal-based ions in the same study were included in this research. The findings reported herein suggest that the different arguments are valid if a wider perspective takes into account the common, different and unique effects of metallic nanoparticles versus metal-based ions. This perspective has been evident from investigations of aquatic (lower organisms such as Daphnia magna and higher organisms like zebra fish) and other organisms (e.g., microbes, nematodes, animal and human cells). It is suggested that the regulation of metallic nanomaterial-based products be transformed to a tier-based approach as a function of the common, different and unique effects to manage the complexity brought into light due to the infinite combinations of the particle physical–chemical properties.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-017-1345-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-017-1345-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Publicly fundedThabet Tolaymat; Ash Genaidy; Wael H.M. Abdelraheem; Wael H.M. Abdelraheem; Dionysios D. Dionysiou; Amro El Badawy;From regulatory perspectives, there has been a debate in the scientific literature as to whether or not metallic engineered nanomaterials (ENMs) should be treated as new chemicals in terms of their toxic effects upon biological species. This debate has prompted us to examine the scientific evidence to validate those paradoxical claims. Investigations covering the effects of metallic ENMs and metal-based ions in the same study were included in this research. The findings reported herein suggest that the different arguments are valid if a wider perspective takes into account the common, different and unique effects of metallic nanoparticles versus metal-based ions. This perspective has been evident from investigations of aquatic (lower organisms such as Daphnia magna and higher organisms like zebra fish) and other organisms (e.g., microbes, nematodes, animal and human cells). It is suggested that the regulation of metallic nanomaterial-based products be transformed to a tier-based approach as a function of the common, different and unique effects to manage the complexity brought into light due to the infinite combinations of the particle physical–chemical properties.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-017-1345-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-017-1345-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Elsevier BV Zhonghao Wan; Lin Luo; Daniel C.W. Tsang; Zirui Luo; Yaoyu Zhou; Yaoyu Zhou; Yuqing Sun; Dan Zhi; Dionysios D. Dionysiou; Jianbing Wang;Abstract The ozone-reactive electrochemical membrane (O3-REM) coupled process for tetracycline (TC) removal was developed by coupling ozonation and electrochemical oxidation in a substoichiometric titanium dioxide (Ti4O7) REM reactor. To achieve concurrent and efficient degradation-mineralization, TC was treated by ozonation and electrochemical oxidation over the Ti4O7 REM anode in a sequent manner. TC was nearly completely removed within 20 min, while the total organic carbon (TOC) removal efficiency attained 9.1% in 20 min, and then reached 77.1% in 80 min under optimal conditions of 2 mg/min ozone dosage and 2 mA/cm2 current density. TC was suspected to be oxidized into some four- and three-ring intermediates within 20 min, some two- and one-ring intermediates within 80 min, and eventually carboxylic acids, CO2 and H2O. The concentrations of NO3−, NO2− and NH4+ increased slightly in the first 20 min and then elevated significantly from 20 to 80 min, indicating an enhanced denitrification rate via electrochemical oxidation. Besides, the bioluminescence inhibition ratio exhibited a slight decrease from 54.5% to 50.6% in the first 20 min and then significantly decreased to 14.5% in 80 min, suggesting an augmented toxicity reduction simultaneously by the coupled technology. Overall, the O3-REM coupled process demonstrated higher TC degradation and TOC removal efficiencies, enhanced toxicity-reduction capability, and lower energy consumption for TC removal compared to individual O3 or Ti4O7 REM processes. By comprehensively analyzing the performance, mechanism and energy consumption of TC removal by the O3-REM coupled process, our research provides insights into the application potential of the coupled process to efficiently eliminate the amount and toxicity of various pharmaceuticals from wastewater.
Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2019.123149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2019.123149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Elsevier BV Zhonghao Wan; Lin Luo; Daniel C.W. Tsang; Zirui Luo; Yaoyu Zhou; Yaoyu Zhou; Yuqing Sun; Dan Zhi; Dionysios D. Dionysiou; Jianbing Wang;Abstract The ozone-reactive electrochemical membrane (O3-REM) coupled process for tetracycline (TC) removal was developed by coupling ozonation and electrochemical oxidation in a substoichiometric titanium dioxide (Ti4O7) REM reactor. To achieve concurrent and efficient degradation-mineralization, TC was treated by ozonation and electrochemical oxidation over the Ti4O7 REM anode in a sequent manner. TC was nearly completely removed within 20 min, while the total organic carbon (TOC) removal efficiency attained 9.1% in 20 min, and then reached 77.1% in 80 min under optimal conditions of 2 mg/min ozone dosage and 2 mA/cm2 current density. TC was suspected to be oxidized into some four- and three-ring intermediates within 20 min, some two- and one-ring intermediates within 80 min, and eventually carboxylic acids, CO2 and H2O. The concentrations of NO3−, NO2− and NH4+ increased slightly in the first 20 min and then elevated significantly from 20 to 80 min, indicating an enhanced denitrification rate via electrochemical oxidation. Besides, the bioluminescence inhibition ratio exhibited a slight decrease from 54.5% to 50.6% in the first 20 min and then significantly decreased to 14.5% in 80 min, suggesting an augmented toxicity reduction simultaneously by the coupled technology. Overall, the O3-REM coupled process demonstrated higher TC degradation and TOC removal efficiencies, enhanced toxicity-reduction capability, and lower energy consumption for TC removal compared to individual O3 or Ti4O7 REM processes. By comprehensively analyzing the performance, mechanism and energy consumption of TC removal by the O3-REM coupled process, our research provides insights into the application potential of the coupled process to efficiently eliminate the amount and toxicity of various pharmaceuticals from wastewater.
Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2019.123149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2019.123149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu